We present an ultraviolet (UV) - extreme-ultraviolet (XUV) pump-probe beamline with applications in ultrafast time-resolved photoelectron spectroscopy. The UV pump pulses, tuneable between 255 and 285 nm and with µJ-level energy, are generated by frequency up-conversion between ultrashort visible/infrared pulses and visible narrow-band pulses. Few-femtosecond XUV probe pulses are produced by a high-order harmonic generation source equipped with a state-of-the-art time-delay compensated monochromator.
View Article and Find Full Text PDFThe exposure of molecules to attosecond extreme-ultraviolet (XUV) pulses offers a unique opportunity to study the early stages of coupled electron-nuclear dynamics in which the role played by the different degrees of freedom is beyond standard chemical intuition. We investigate, both experimentally and theoretically, the first steps of charge-transfer processes initiated by prompt ionization in prototype donor-π-acceptor molecules, namely nitroanilines. Time-resolved measurement of this process is performed by combining attosecond XUV-pump/few-femtosecond infrared-probe spectroscopy with advanced many-body quantum chemistry calculations.
View Article and Find Full Text PDFIsolated attosecond pulse (IAP) generation usually involves the use of short-medium gas cells operated at high pressures. In contrast, long-medium schemes at low pressures are commonly perceived as inherently unsuitable for IAP generation due to the nonlinear phenomena that challenge favourable phase-matching conditions. Here we provide clear experimental evidence on the generation of isolated extreme-ultraviolet attosecond pulses in a semi-infinite gas cell, demonstrating the use of extended-medium geometries for effective production of IAPs.
View Article and Find Full Text PDFHigh-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging.
View Article and Find Full Text PDFAttosecond extreme ultraviolet (XUV) and soft x-ray sources provide powerful new tools for studying ultrafast molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy (ATAS) to follow strong-field-initiated dynamics in vinyl bromide. Probing the Br M edge allows one to assess the competing processes in neutral and ionized molecular species.
View Article and Find Full Text PDFConical intersections between electronic states often dictate the chemistry of photoexcited molecules. Recently developed sources of ultrashort extreme ultraviolet (XUV) pulses tuned to element-specific transitions in molecules allow for the unambiguous detection of electronic state-switching at a conical intersection. Here, the fragmentation of photoexcited iso-propyl iodide and tert-butyl iodide molecules (i-CHI and t-CHI) through a conical intersection between Q/Q spin-orbit states is revealed by ultrafast XUV transient absorption measuring iodine 4d core-to-valence transitions.
View Article and Find Full Text PDFAttosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters, multilayer mirrors and manipulation of the driving field.
View Article and Find Full Text PDFAttosecond probing of core-level electronic transitions provides a sensitive tool for studying valence molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy to follow the valence dynamics of strong-field initiated processes in methyl bromide. By probing the 3d core-to-valence transition, we resolve the strong field excitation and ensuing fragmentation of the neutral σ* excited states of methyl bromide.
View Article and Find Full Text PDFUltrafast XUV chemistry is offering new opportunities to decipher the complex dynamics taking place in highly excited molecular states and thus better understand fundamental natural phenomena as molecule formation in interstellar media. We used ultrashort XUV light pulses to perform XUV pump-IR probe experiments in caffeine as a model of prebiotic molecule. We observed a 40 fs decay of excited cationic states.
View Article and Find Full Text PDFExperiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe^{+} and Xe^{2+}. A high degree of coherence g=0.
View Article and Find Full Text PDFFemtosecond laser pulses lasting only a few optical periods hold the potential for probing and manipulating the electronic degrees of freedom within matter. However, the generation of high-contrast, few-cycle pulses in the high power limit still remains nontrivial. In this Letter, we present the application of ammonium dihydrogen phosphate (ADP) as an optical medium for compensating for the higher-order dispersion of a carrier-envelope stable few-cycle waveform centered at 735 nm.
View Article and Find Full Text PDFThe attosecond streak camera method is usually implemented to characterize the temporal phase and amplitude of isolated attosecond pulses produced by high-order harmonic generation. This approach, however, does not provide any information about the carrier-envelope phase of the attosecond pulses. We demonstrate that the photoelectron spectra generated by an attosecond waveform and an intense synchronized infrared field are sensitive to the electric field of the attosecond pulse.
View Article and Find Full Text PDF