Publications by authors named "Maurizio Pellegrino"

Background: Some clinically important genetic variants are not easily evaluated with next-generation sequencing (NGS) methods due to technical challenges arising from high- similarity copies (e.g., PMS2, SMN1/SMN2, GBA1, HBA1/HBA2, CYP21A2), repetitive short sequences (e.

View Article and Find Full Text PDF

Background: While leeches in the genus Hirudo have long been models for neurobiology, the molecular underpinnings of nervous system structure and function in this group remain largely unknown. To begin to bridge this gap, we performed RNASeq on pools of identified neurons of the central nervous system (CNS): sensory T (touch), P (pressure) and N (nociception) neurons; neurosecretory Retzius cells; and ganglia from which these four cell types had been removed.

Results: Bioinformatic analyses identified 3565 putative genes whose expression differed significantly among the samples.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) is used to detect gene variants in genetically complex cell populations of cancer patient samples. Traditional bulk analysis can only provide average variant allele frequencies of the targeted genes across all sampled cells. It fails to resolve mutational co-occurrences and may miss rare cancer cells.

View Article and Find Full Text PDF

Gilteritinib is a potent and selective kinase inhibitor with single-agent clinical efficacy in relapsed/refractory -mutated acute myeloid leukemia (AML). In this context, however, gilteritinib is not curative, and response duration is limited by the development of secondary resistance. To evaluate resistance mechanisms, we analyzed baseline and progression samples from patients treated on clinical trials of gilteritinib.

View Article and Find Full Text PDF

To enable the characterization of genetic heterogeneity in tumor cell populations, we developed a novel microfluidic approach that barcodes amplified genomic DNA from thousands of individual cancer cells confined to droplets. The barcodes are then used to reassemble the genetic profiles of cells from next-generation sequencing data. By using this approach, we sequenced longitudinally collected acute myeloid leukemia (AML) tumor populations from two patients and genotyped up to 62 disease relevant loci across more than 16,000 individual cells.

View Article and Find Full Text PDF
Article Synopsis
  • LGR4, LGR5, and LGR6 are G-protein-coupled receptors involved in Wnt signaling, but only LGR6 is identified as an epithelial stem cell marker in squamous cell carcinoma (SCC).
  • By using advanced mouse models, researchers found that LGR6 is linked to increased stem cell characteristics and higher frequencies in advanced SCCs, while downregulation of LGR6 leads to heightened skin cell proliferation.
  • Mice lacking LGR6 show a greater risk for SCC development, suggesting a compensatory role of LGR5, which parallels findings in humans with Wnt pathway gene mutations that increase SCC susceptibility.
View Article and Find Full Text PDF

Background: Rare cell subtypes can profoundly impact the course of human health and disease, yet their presence within a sample is often missed with bulk molecular analysis. Single-cell analysis tools such as FACS, FISH-FC and single-cell barcode-based sequencing can investigate cellular heterogeneity; however, they have significant limitations that impede their ability to identify and transcriptionally characterize many rare cell subpopulations.

Results: PCR-activated cell sorting (PACS) is a novel cytometry method that uses single-cell TaqMan PCR reactions performed in microfluidic droplets to identify and isolate cell subtypes with high-throughput.

View Article and Find Full Text PDF

Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch.

View Article and Find Full Text PDF

Targeted sequence enrichment enables better identification of genetic variation by providing increased sequencing coverage for genomic regions of interest. Here, we report the development of a new target enrichment technology that is highly differentiated from other approaches currently in use. Our method, MESA (Microfluidic droplet Enrichment for Sequence Analysis), isolates genomic DNA fragments in microfluidic droplets and performs TaqMan PCR reactions to identify droplets containing a desired target sequence.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the "atopic march." Signaling between epithelial cells and innate immune cells via the cytokine thymic stromal lymphopoietin (TSLP) is thought to drive AD and the atopic march.

View Article and Find Full Text PDF

Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body.

View Article and Find Full Text PDF

Tissue damage evokes an inflammatory response that promotes the removal of harmful stimuli, tissue repair, and protective behaviors to prevent further damage and encourage healing. However, inflammation may outlive its usefulness and become chronic. Chronic inflammation can lead to a host of diseases, including asthma, itch, rheumatoid arthritis, and colitis.

View Article and Find Full Text PDF

Olfactory receptors (Ors) convert chemical signals--the binding of odors and pheromones--to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled receptors.

View Article and Find Full Text PDF

The sensation of hunger after a period of fasting and of satiety after eating is crucial to behavioral regulation of food intake, but the biological mechanisms regulating these sensations are incompletely understood. We studied the behavioral and physiological adaptations to fasting in the vinegar fly (Drosophila melanogaster). Here we show that both male and female flies increased their rate of food intake transiently in the post-fasted state.

View Article and Find Full Text PDF

Blood-feeding insects such as mosquitoes are efficient vectors of human infectious diseases because they are strongly attracted by body heat, carbon dioxide and odours produced by their vertebrate hosts. Insect repellents containing DEET (N,N-diethyl-meta-toluamide) are highly effective, but the mechanism by which this chemical wards off biting insects remains controversial despite decades of investigation. DEET seems to act both at close range as a contact chemorepellent, by affecting insect gustatory receptors, and at long range, by affecting the olfactory system.

View Article and Find Full Text PDF

The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum.

View Article and Find Full Text PDF

In animals, the sense of smell is often used as a powerful way to attract potential mates, to find food and to explore the environment. Different animals evolved different systems to detect volatile odorants, tuned to the specific needs of each species. Vertebrates and nematodes have been used extensively as models to study the mechanisms of olfaction: the molecular players are olfactory receptors (ORs) expressed in olfactory sensory neurons (OSNs) where they bind to volatile chemicals, acting as the first relay of olfactory processing.

View Article and Find Full Text PDF

In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly.

View Article and Find Full Text PDF

DEET (N,N-diethyl-meta-toluamide) is the world's most widely used topical insect repellent, with broad effectiveness against most insects. Its mechanism of action and molecular target remain unknown. Here, we show that DEET blocks electrophysiological responses of olfactory sensory neurons to attractive odors in Anopheles gambiae and Drosophila melanogaster.

View Article and Find Full Text PDF

Dendritic spines are highly dynamic protuberances that are thought to be crucial for learning and memory. Although it is well known that actin filaments and membrane dynamics regulate spine plasticity, how these two events are linked locally is less clear. Here, we provide evidence that Citron-N (CIT-N), a binding partner of the small GTPase RhoA, is associated with the actin filaments and Golgi compartments of dendritic spines.

View Article and Find Full Text PDF

Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans do show similar artifacts, which might affect subsequent analysis. We developed a tool, Harshlight, for the detection and masking of blemishes in HDONA microarray chips.

View Article and Find Full Text PDF

It is rare that a single gene is sufficient to represent all aspects of genomic activity. Similarly, most common diseases cannot be explained by a mutations at a single locus. Since complex systems tend to be neither linear nor hierarchical in nature, but to have correlated components of unknown relative importance, the assumptions of traditional (parametric) multivariate statistical methods can rarely be justified on theoretical grounds.

View Article and Find Full Text PDF

Haptoglobin and Hemopexin are plasma acute phase proteins that bind with high-affinity hemoglobin and heme, respectively. They play a key role in the protection against oxidative stress and inflammation. To dissect in more detail the mechanism of action of Haptoglobin and Hemopexin, it is important to identify their downstream effectors as well as genes functionally related to them.

View Article and Find Full Text PDF

Background: Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans do show similar artifacts, which might affect subsequent analysis. Although all but the starkest blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs), few tools are available to help with the detection of those defects.

View Article and Find Full Text PDF