In this paper, the concentration effects of Au nanoparticles placed in dye-doped polymeric spherical microlasers are investigated. The microlasers (average diameter of ∼293µ) are made with a mixture of UV curable polymer named Norland Blocking Adhesive (NBA) and Rhodamine 6 G. Four different ratios (between the Au nanoparticles and the NBA solutions) are investigated here, namely, 1000, 2000, 3000, and 4000 ratios.
View Article and Find Full Text PDFGreen composite processing technology of wood fibers is an inevitable choice for global sustainable development. In this research, waste poplar powder with different particle sizes was used to prepare glue-free biocomposites with good mechanical and waterproof properties by hot-molding. The biocomposites made of larger size wood powder had better tensile strength (40.
View Article and Find Full Text PDFFormaldehyde emission is an intrinsic property derived from aldehyde-based resin that is used in wood-based composites. To reduce formaldehyde emission from plywood, the composite catalyst of tourmaline-titanium dioxide (T-TiO) was fabricated by the sol-gel method. Furthermore, the impregnated paper loaded with the T-TiO composite catalyst was used to decorate the surface of 5-layer poplar plywood.
View Article and Find Full Text PDFBackground: The term "plasmonic" describes the relationship between electromagnetic fields and metallic nanostructures. Plasmon-based sensors have been used innovatively to accomplish different biomedical tasks, including detection of cancer. Plasmonic sensors also have been used in biochip applications and biosensors and have the potential to be implemented as implantable point-of-care devices.
View Article and Find Full Text PDFCrystallinity is an essential indicator for evaluating the quality of fiber materials. Terahertz spectroscopy technology has excellent penetrability, no harmful substances, and commendable detection capability of absorption characteristics. The terahertz spectroscopy technology has great application potential in the field of fiber material research, especially for the characterization of the crystallinity of cellulose.
View Article and Find Full Text PDFIn this Letter, we study a novel untethered photonic wall pressure sensor that uses as sensing element a dome-shaped micro-scale laser. Since the sensor does not require any optical or electrical cabling, it allows measurements where cabling tends to be problematic. The micro-laser is made by a mixture of Trimethylolpropane Tri(3-mercaptopropionate), commercial name THIOCURE and Polyethylene (glycol) Diacrylate (PEGDA) mixed with a solution of rhodamine 6G.
View Article and Find Full Text PDFIn this paper, we carried out experiments to investigate dome-shaped microlaser based on the whispering gallery modes for remote wall temperature sensing. The dome-shaped resonator was made of Norland blocking adhesive (NBA 107) doped with a solution of rhodamine 6G and ethanol. Two different configurations are considered: (i) resonator placed on top of a thin layer of 10:1 polydimethylsiloxane (10:1 PDMS), and (ii) resonator encapsulated in a thin layer of 10:1 PDMS.
View Article and Find Full Text PDF