Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life.
View Article and Find Full Text PDFTargeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy.
View Article and Find Full Text PDFPurpose: Recent preclinical data suggest that cyclin-dependent kinase 4/6 (CDK4/6) inhibition may be harnessed to sensitize estrogen receptor-positive (ER) breast cancer to radiotherapy. However, these findings were obtained in human ER breast cancer cell lines exposed to subclinical doses of CDK4/6 inhibitors with limited attention to treatment schedule. We investigated the activity of radiotherapy combined with the prototypic CDK4/6 inhibitor palbociclib placing emphasis on therapeutic schedule.
View Article and Find Full Text PDFHematol Oncol Clin North Am
October 2020
Cell cycle dysregulation caused by aberrant cyclin D1 and CDK4 expression is a major determinant for proliferation of cancer cells in mantle cell lymphoma (MCL). Inhibition of CDK4/6 induces G1 arrest of MCL cells in patients, appearing to deepen and prolong the clinical response to partner agents. This article reviews aberrations of cell cycle genes in MCL cells and clinical trials of CDK4/6 inhibitors for MCL.
View Article and Find Full Text PDFTargeting the cell cycle represents a rational approach to mantle cell lymphoma (MCL) therapy, as aberrant expression of cyclin D1 and dysregulation of CDK4 underlie cell cycle progression and proliferation of MCL cells. Although cell cycle cancer therapy was historically ineffective due to a lack of selective and effective drugs, this landscape changed with the advent of selective and potent small-molecule oral CDK4/6 inhibitors. Here, we review the anti-tumor activities and clinical data of selective CDK4/6 inhibitors in MCL.
View Article and Find Full Text PDFIn mantle cell lymphoma (MCL), cyclin D1 combines with CDK4/6 to phosphorylate Rb, releasing a break on the G1 to S phase cell cycle. Palbociclib is a specific, potent, oral inhibitor of CDK4/6 capable of inducing a complete, prolonged G1 cell cycle arrest (pG1) in Rb+ MCL cells. The proteasome inhibitor bortezomib is approved by the US Food and Drug Administration for treatment of mantle cell lymphoma.
View Article and Find Full Text PDFSingle-agent ibrutinib is active in patients with previously treated mantle cell lymphoma (MCL); however, nearly half of all patients experience treatment failure during the first year. We previously demonstrated that prolonged early G1 cell cycle arrest induced by the oral, specific CDK4/6 inhibitor palbociclib can overcome ibrutinib resistance in primary human MCL cells and MCL cell lines expressing wild-type Bruton's tyrosine kinase (BTK). Therefore, we conducted a phase 1 trial to evaluate the dosing, safety, and preliminary activity of palbociclib plus ibrutinib in patients with previously treated mantle cell lymphoma.
View Article and Find Full Text PDFIntroduction: Therapeutic options for multiple myeloma (MM) are growing, yet clinical outcomes remain heterogeneous. Cytogenetic analysis and disease staging are mainstays of risk stratification, but data suggest a complex interplay between numerous abnormalities. Myeloma cell proliferation is a metric shown to predict outcomes, but available methods are not feasible in clinical practice.
View Article and Find Full Text PDFThe novel Bruton's tyrosine kinase inhibitor ibrutinib has demonstrated high response rates in B-cell lymphomas; however, a growing number of ibrutinib-treated patients relapse with resistance and fulminant progression. Using chemical proteomics and an organotypic cell-based drug screening assay, we determine the functional role of the tumour microenvironment (TME) in ibrutinib activity and acquired ibrutinib resistance. We demonstrate that MCL cells develop ibrutinib resistance through evolutionary processes driven by dynamic feedback between MCL cells and TME, leading to kinome adaptive reprogramming, bypassing the effect of ibrutinib and reciprocal activation of PI3K-AKT-mTOR and integrin-β1 signalling.
View Article and Find Full Text PDFDespite unprecedented clinical activity in mantle cell lymphoma (MCL), primary and acquired resistance to ibrutinib is common. The outcomes and ideal management of patients who experience ibrutinib failure are unclear. We performed a retrospective cohort study of all patients with MCL who experienced disease progression while receiving ibrutinib across 15 international sites.
View Article and Find Full Text PDFThis phase 1/2 study was the first to evaluate the safety and efficacy of the cyclin-dependent kinase (CDK) 4/6-specific inhibitor palbociclib (PD-0332991) in sequential combination with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. The recommended phase 2 dose was palbociclib 100 mg orally once daily on days 1-12 of a 21-day cycle with bortezomib 1.0 mg/m2 (intravenous) and dexamethasone 20 mg (orally 30 min pre-bortezomib dosing) on days 8 and 11 (early G1 arrest) and days 15 and 18 (cell cycle resumed).
View Article and Find Full Text PDFCyclin-dependent kinase (CDK)4 and CDK6 are frequently overexpressed or hyperactivated in human cancers. Targeting CDK4/CDK6 in combination with cytotoxic killing therefore represents a rational approach to cancer therapy. By selective inhibition of CDK4/CDK6 with PD 0332991, which leads to early G1 arrest and synchronous S-phase entry upon release of the G1 block, we have developed a novel strategy to prime acute myeloid leukemia (AML) cells for cytotoxic killing by cytarabine (Ara-C).
View Article and Find Full Text PDFUnlabelled: Despite the unprecedented clinical activity of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib in mantle cell lymphoma (MCL), acquired resistance is common. By longitudinal integrative whole-exome and whole-transcriptome sequencing and targeted sequencing, we identified the first relapse-specific C481S mutation at the ibrutinib binding site of BTK in MCL cells at progression following a durable response. This mutation enhanced BTK and AKT activation and tissue-specific proliferation of resistant MCL cells driven by CDK4 activation.
View Article and Find Full Text PDFPhosphatidylinositol-3-kinase (PI3K) signaling is constitutive in most human cancers. Selective inhibition of PI3Kδ (p110δ) by GS-1101 has emerged as a promising therapy in chronic lymphocytic leukemia and indolent lymphomas. In aggressive non-Hodgkin lymphomas such as mantle cell lymphoma (MCL), however, efficacy has been observed, but the extent and duration of tumor control is modest.
View Article and Find Full Text PDFDysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases.
View Article and Find Full Text PDFResistance to growth suppression by TGF-beta1 is common in cancer; however, mutations in this pathway are rare in hematopoietic malignancies. In multiple myeloma, a fatal cancer of plasma cells, malignant cells accumulate in the TGF-beta-rich bone marrow due to loss of both cell cycle and apoptotic controls. Herein we show that TGF-beta activates Smad2 but fails to induce cell cycle arrest or apoptosis in primary bone marrow myeloma and human myeloma cell lines due to its inability to activate G(1) cyclin-dependent kinase (CDK) inhibitors (p15(INK4b), p21(CIP1/WAF1), p27(KIP1), p57(KIP2)) or to repress c-myc and Bcl-2 transcription.
View Article and Find Full Text PDFMultiple myeloma (MM) remains incurable partly because no effective cell cycle-based therapy has been available to both control tumor cell proliferation and synergize with cytotoxic killing. PD 0332991 is an orally active small molecule that potently and specifically inhibits Cdk4 and Cdk6. It has been shown to induce rapid G(1) cell cycle arrest in primary human myeloma cells and suppress tumor growth in xenograft models.
View Article and Find Full Text PDFCell cycle deregulation is central to the initiation and fatality of multiple myeloma, the second most common hematopoietic cancer, although impaired apoptosis plays a critical role in the accumulation of myeloma cells in the bone marrow. The mechanism for intermittent, unrestrained proliferation of myeloma cells is unknown, but mutually exclusive activation of cyclin-dependent kinase 4 (Cdk4)-cyclin D1 or Cdk6-cyclin D2 precedes proliferation of bone marrow myeloma cells in vivo. Here, we show that by specific inhibition of Cdk4/6, the orally active small-molecule PD 0332991 potently induces G(1) arrest in primary bone marrow myeloma cells ex vivo and prevents tumor growth in disseminated human myeloma xenografts.
View Article and Find Full Text PDFMultiple myeloma, the second most common hematopoietic cancer, ultimately becomes refractory to treatment when self-renewing multiple myeloma cells begin unrestrained proliferation by unknown mechanisms. Here, we show that one, but not more than one, of the three early G(1) D cyclins is elevated in each case of multiple myeloma. Cyclin D1 or D3 expression does not vary in the clinical course, but that alone is insufficient to promote cell cycle progression unless cyclin-dependent kinase 4 (cdk4) is also elevated, in the absence of cdk6, to phosphorylate the retinoblastoma protein (Rb).
View Article and Find Full Text PDFLocalization of a membrane protein in a subcellular compartment can be achieved by its retention in the compartment or by its continuous transport toward this compartment. Previous results have suggested that specific enzymes are localized in the Golgi apparatus at least in part by selective retention and exclusion from transport vesicles. However, the function of some Golgi SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins is not compatible with their exclusion from transport vesicles.
View Article and Find Full Text PDFIn yeast, the assembly of the target (t)-SNAREs [Tlg2p/Tlg1p,Vti1p] and [Pep12p/Tlg1p,Vti1p] with the vesicular (v)-SNARE Snc2p promotes endocytic fusion. Here, selected mutations and truncations of SNARE proteins were tested in an in vitro fusion assay to identify potential regulatory regions in these proteins, and two distinct regions were found. The first is represented by the combined effect of the three t-SNARE N-terminal regions and the second is located within the Tlg1p SNARE motif.
View Article and Find Full Text PDFMultiple myeloma is a malignancy of plasma cells. Vaccine immunotherapy is among the novel therapeutic strategies under investigation for this disease. To identify myeloma-associated antigens as potential targets for vaccine immunotherapy, we surveyed a comprehensive panel of bone marrow specimens from patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma for expression of cancer-testis (CT) antigens.
View Article and Find Full Text PDF