Publications by authors named "Maurizio Chiurazzi"

Small proteins are ubiquitous in all kingdoms of life. MicroProteins, initially characterized as small proteins with protein interaction domains that enable them to interact with larger multidomain proteins, frequently modulate the function of these proteins. The study of these small proteins has contributed to a greater comprehension of protein regulation.

View Article and Find Full Text PDF

Plant root development depends on signaling pathways responding to external and internal signals. In this study we demonstrate the involvement of the Lotus japonicus LjNPF4.6 gene in the ABA and nitrate root responding pathways.

View Article and Find Full Text PDF

Theoretically, the PEP-CK C subtype has a higher quantum yield of CO assimilation ( ) than NADP-ME or NAD-ME subtypes because ATP required for operating the CO-concentrating mechanism is believed to mostly come from the mitochondrial electron transport chain (mETC). However, reported is not higher in PEP-CK than in the other subtypes. We hypothesise, more photorespiration, associated with higher leakiness and O evolution in bundle-sheath (BS) cells, cancels out energetic advantages in PEP-CK species.

View Article and Find Full Text PDF

Diatoms are a highly successful group of phytoplankton, well adapted also to oligotrophic environments and capable of handling nutrient fluctuations in the ocean, particularly nitrate. The presence of a large vacuole is an important trait contributing to their adaptive features. It confers diatoms the ability to accumulate and store nutrients, such as nitrate, when they are abundant outside and then to reallocate them into the cytosol to meet deficiencies, in a process called luxury uptake.

View Article and Find Full Text PDF

Halotolerant (HT) bacteria are a group of microorganisms able to thrive in environments with relatively high salt concentrations. HT-microorganisms with plant growth-promoting (PGP) characteristics have been proposed to increase plant tolerance in salty soil. Here, we evaluated the PGP properties at increasing NaCl concentrations of HT-Bacillus strains, previously shown to have beneficial effects under physiological conditions.

View Article and Find Full Text PDF

Nitrate is a key mineral nutrient required for plant growth and development. Plants have evolved sophisticated mechanisms to respond to changes of nutritional availability in the surrounding environment and the optimization of root nitrate acquisition under nitrogen starvation is crucial to cope with unfavoured condition of growth. In this study we present a general description of the regulatory transcriptional and spatial profile of expression of the nitrate transporter family.

View Article and Find Full Text PDF

Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy.

View Article and Find Full Text PDF

Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the auxin receptor family, .

View Article and Find Full Text PDF

Nitrogen-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with the soil bacteria, rhizobia. Proteins of the nitrate transporter 1/peptide transporter family (NPF) are largely represented in the subcategory of nodule-induced transporters identified in mature nodules. The role of nitrate as a signal/nutrient regulating nodule functioning has been recently highlighted in the literature, and NPFs may play a central role in both the permissive and inhibitory pathways controlling N-fixation efficiency.

View Article and Find Full Text PDF

Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth.

View Article and Find Full Text PDF

Atmospheric nitrogen (N -fixing nodules are formed on the roots of legume plants as result of the symbiotic interaction with rhizobia. Nodule functioning requires high amounts of carbon and energy, and therefore legumes have developed finely tuned mechanisms to cope with changing external environmental conditions, including nutrient availability and flooding. The investigation of the role of nitrate as regulator of the symbiotic N fixation has been limited to the inhibitory effects exerted by high external concentrations on nodule formation, development and functioning.

View Article and Find Full Text PDF

Background: After uptake from soil into the root tissue, distribution and allocation of nitrate throughout the whole plant body, is a critical step of nitrogen use efficiency (NUE) and for modulation of plant growth in response to various environmental conditions. In legume plants nitrate distribution is also important for the regulation of the nodulation process that allows to fix atmospheric N (N) through the symbiotic interaction with rhizobia (symbiotic nitrogen fixation, SNF).

Results: Here we report the functional characterization of the Lotus japonicus gene LjNPF2.

View Article and Find Full Text PDF

Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution, and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification.

View Article and Find Full Text PDF

filamentous fungi are increasingly used as biocontrol agents and plant biostimulants. Growing evidence indicates that part of the beneficial effects is mediated by the activity of fungal metabolites on the plant host. We have investigated the mechanism of plant perception of HYTLO1, a hydrophobin abundantly secreted by , which may play an important role in the early stages of the plant-fungus interaction.

View Article and Find Full Text PDF

N-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with soil bacteria, rhizobia. The nodule functioning is still a poorly characterized step of the symbiotic interaction, as only a few of the genes induced in N-fixing nodules have been functionally characterized. We present here the characterization of a member of the nitrate transporter1/peptide transporter family, The phenotypic characterization carried out in independent LORE1 insertion lines indicates a positive role of LjNPF8.

View Article and Find Full Text PDF

The PII protein in plants has been associated to many different tissue specialized roles concerning the Nitrogen assimilation pathways. We report here the further characterization of transgenic lines overexpressing the PII protein encoded by the gene that is strongly expressed in the guard cells of Lotus plants. Consistently with a putative role played by PII in that specific cellular context we have observed an alteration of the patterns of stomatal movement in the overexpressing plants.

View Article and Find Full Text PDF

The establishment of legumes crops with phenotypic traits that favour their persistence and competitiveness in mixed swards is a pressing task in sustainable agriculture. However, to fully exploit the potential benefits of introducing pasture-based grass-legume systems, an increased scientific knowledge of legume agronomy for screening of favourable traits is needed. We exploited a short-cut phenotypic screening as a preliminary step to characterize the growth capacity of three different cvs cultivated in different nutritional conditions as well as the evaluation of their nodulation capacities.

View Article and Find Full Text PDF

G Protein Coupled Receptor (GPCRs) are integral membrane proteins involved in various signalling pathways by perceiving many extracellular signals and transducing them to heterotrimeric G proteins, which further transduce these signals to intracellular downstream effectors. GCR1 is the only reliable plant candidate as a member of the GPCRs superfamily. In the legume/rhizobia symbiotic interaction, G proteins are involved in signalling pathways controlling different steps of the nodulation program.

View Article and Find Full Text PDF

Nutrient concentrations in the oceans display significant temporal and spatial variability, which strongly affects growth, distribution and survival of phytoplankton. Nitrogen (N) in particular is often considered a limiting resource for prominent marine microalgae, such as diatoms. Diatoms possess a suite of N-related transporters and enzymes and utilize a variety of inorganic (e.

View Article and Find Full Text PDF

In this study the effects of salt stress and nitrogen assimilation have been investigated in roots of hydroponically-grown barley plants exposed to 150 mM NaCl, in presence or absence of ammonium as the sole nitrogen source. Salt stress determines a diversion of root metabolism towards the synthesis of osmolytes, such as glycine betaine and proline, and increased levels of reduced glutathione. The metabolic changes triggered by salt stress result in a decrease in both activities and protein abundance of key enzymes, namely GOGAT and PEP carboxylase, and in a slight increase in HSP70.

View Article and Find Full Text PDF

We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning.

View Article and Find Full Text PDF

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies.

View Article and Find Full Text PDF

Nitrate is an essential element for plant growth, both as a primary nutrient in the nitrogen assimilation pathway and as an important signal for plant development. Low- and high-affinity transport systems are involved in the nitrate uptake from the soil and its distribution between different plant tissues. By an in silico search, we identified putative members of both systems in the model legume Lotus japonicus.

View Article and Find Full Text PDF