Publications by authors named "Maurizio Ceppi"

Introduction: This study investigates the role of Fibroblast Activation Protein (FAP)-positive cancer-associated fibroblasts (FAP+CAF) in shaping the tumor immune microenvironment, focusing on its association with immune cell functionality and cytokine expression patterns.

Methods: Utilizing immunohistochemistry, we observed elevated FAP+CAF density in metastatic versus primary renal cell carcinoma (RCC) tumors, with higher FAP+CAF correlating with increased T cell infiltration in RCC, a unique phenomenon illustrating the complex interplay between tumor progression, FAP+CAF density, and immune response.

Results: Analysis of immune cell subsets in FAP+CAF-rich stromal areas further revealed significant correlations between FAP+ stroma and various T cell types, particularly in RCC and non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Introduction: Fibroblast activation protein (FAP) is predominantly upregulated in various tumor microenvironments and scarcely expressed in normal tissues.

Methods: We analyzed FAP across 1216 tissue samples covering 23 tumor types and 70 subtypes.

Results: Elevated FAP levels were notable in breast, pancreatic, esophageal, and lung cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Rhesus macaques naturally develop colorectal cancers (CRC) that closely resemble human CRC in terms of histology, progression, and genetic characteristics, making them valuable for studying cancer immunotherapy.
  • Detailed analyses, including advanced imaging and molecular techniques like DNA sequencing and transcriptomics, confirmed similarities in mutation patterns and functional behaviors between macaque and human CRCs, particularly highlighting MLH1 loss and microsatellite instability.
  • The research also indicated a significant presence of DNA hypermethylation, particularly affecting MLH1, contributing to alterations in DNA topology that may impact transcription factor binding, showcasing the complex molecular landscape of CRC in these primates.
View Article and Find Full Text PDF

This first-in-human study evaluated RO7122290, a bispecific fusion protein carrying a split trimeric 4-1BB (CD137) ligand and a fibroblast activation protein α (FAP) binding site that costimulates T cells for improved tumor cell killing in FAP-expressing tumors. Patients with advanced or metastatic solid tumors received escalating weekly intravenous doses of RO7122290 as a single agent ( = 65) or in combination with a 1200-milligram fixed dose of the anti-programmed death-ligand 1 (anti-PD-L1) antibody atezolizumab given every 3 weeks ( = 50), across a tested RO7122290 dose range of 5 to 2000 milligrams and 45 to 2000 milligrams, respectively. Three dose-limiting toxicities were reported, two at different RO7122290 single-agent doses (grade 3 febrile neutropenia and grade 3 cytokine release syndrome) and one for the combination (grade 3 pneumonitis).

View Article and Find Full Text PDF

The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans.

View Article and Find Full Text PDF

Background: Large genomic rearrangements (LGR) in consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5' region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families.

Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing.

View Article and Find Full Text PDF

Purpose: This study investigated the safety and clinical activity of lumretuzumab, a humanised antihuman epidermal growth factor receptor 3 (HER3) monoclonal antibody, in combination with carboplatin and paclitaxel in first-line treatment of patients with squamous non-small cell lung cancer (sqNSCLC). HER3 ligand heregulin and HER3 protein expression were evaluated as potential biomarkers of clinical activity.

Patients And Methods: This open-label, phase Ib/II study enrolled patients receiving lumretuzumab at 800 mg (flat) in combination with carboplatin (area under the curve (AUC) 6 mg/mL×min) and paclitaxel (200 mg/m) administered intravenously on a every 3-week schedule.

View Article and Find Full Text PDF

Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL.

View Article and Find Full Text PDF

Human protein biomarker discovery relies heavily on pre-clinical models, in particular established cell lines and patient-derived xenografts, but confirmation studies in primary tissue are essential to demonstrate clinical relevance. We describe in this study the process that was followed to clinically translate a 5-protein response signature predictive for the activity of an anti-HER3 monoclonal antibody (lumretuzumab) originally measured in fresh frozen xenograft tissue. We detail the development, qualification, and validation of the multiplexed targeted mass spectrometry assay used to assess the signature performance in formalin-fixed, paraffin-embedded human clinical samples collected in a phase Ib trial designed to evaluate lumretuzumab in patients with metastatic breast cancer.

View Article and Find Full Text PDF

Unlabelled: Purpose To investigate the safety and clinical activity of comprehensive human epidermal growth factor receptor (HER) family receptor inhibition using lumretuzumab (anti-HER3) and pertuzumab (anti-HER2) in combination with paclitaxel in patients with metastatic breast cancer (MBC). Methods This phase Ib study enrolled 35 MBC patients (first line or higher) with HER3-positive and HER2-low (immunohistochemistry 1+ to 2+ and in-situ hybridization negative) tumors. Patients received lumretuzumab (1000 mg in Cohort 1; 500 mg in Cohorts 2 and 3) plus pertuzumab (840 mg loading dose [LD] followed by 420 mg in Cohorts 1 and 2; 420 mg without LD in Cohort 3) every 3 weeks, plus paclitaxel (80 mg/m weekly in all cohorts).

View Article and Find Full Text PDF

This study investigated the safety, clinical activity, and target-associated biomarkers of lumretuzumab, a humanized, glycoengineered, anti-HER3 monoclonal antibody (mAb), in combination with the EGFR-blocking agents erlotinib or cetuximab in patients with advanced HER3-positive carcinomas. The study included two parts: dose escalation and dose extension phases with lumretuzumab in combination with either cetuximab or erlotinib, respectively. In both parts, patients received lumretuzumab doses from 400 to 2,000 mg plus cetuximab or erlotinib according to standard posology, respectively.

View Article and Find Full Text PDF

Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo.

View Article and Find Full Text PDF

Purpose: A first-in-human phase I study was conducted to characterize safety, efficacy, and pharmacokinetic (PK) and pharmacodynamic (PD) properties of lumretuzumab, a humanized and glycoengineered anti-HER3 monoclonal antibody, in patients with advanced cancer.

Experimental Design: Twenty-five patients with histologically confirmed HER3-expressing tumors received lumretuzumab (100, 200, 400, 800, 1,600, and 2,000 mg) every two weeks (q2w) in 3+3 dose-escalation phase. In addition, 22 patients were enrolled into an extension cohort at 2,000 mg q2w.

View Article and Find Full Text PDF

While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment.

View Article and Find Full Text PDF

Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1.

View Article and Find Full Text PDF

The BRCA1 and BRCA2 genes are involved in breast and ovarian cancer susceptibility. About 2 to 4% of breast cancer patients with positive family history, negative for point mutations, can be expected to carry large rearrangements in one of these two genes. We developed a novel diagnostic genetic test for the physical mapping of large rearrangements, based on molecular combing (MC), a FISH-based technique for direct visualization of single DNA molecules at high resolution.

View Article and Find Full Text PDF

In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation that exhibits specific mechanisms to control the immune response. Here we show that in response to polyriboinosinic:polyribocytidylic acid (pI:C), DCs mount a specific integrated stress response during which the transcription factor ATF4 and the growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), a phosphatase 1 (PP1) cofactor, are expressed. In agreement with increased GADD34 levels, an extensive dephosphorylation of the translation initiation factor eIF2α was observed during DC activation.

View Article and Find Full Text PDF

Background: Dendritic cells (DCs) are the sentinels of the mammalian immune system, characterized by a complex maturation process driven by pathogen detection. Although multiple studies have described the analysis of activated DCs by transcriptional profiling, recent findings indicate that mRNAs are also regulated at the translational level. A systematic analysis of the mRNAs being translationally regulated at various stages of DC activation was performed using translational profiling, which combines sucrose gradient fractionation of polysomal-bound mRNAs with DNA microarray analysis.

View Article and Find Full Text PDF

The ability to manipulate in vitro cultured dendritic cells (DCs) by transfection represents an attractive strategy to load these antigen-presenting cells with genetic material encoding various immunogenic epitopes. The gene transfer approach can also be applied to DCs with the aim of expressing immunologically active molecules such as cytokines, costimulatory molecules, or simply to transiently express proteins to perform cell biology studies. Available gene transfer technologies for DCs include both viral and non-viral vector-based approaches.

View Article and Find Full Text PDF

We developed a nonradioactive fluorescence-activated cell sorting-based assay, called surface sensing of translation (SUnSET), which allows the monitoring and quantification of global protein synthesis in individual mammalian cells and in heterogeneous cell populations. We demonstrate here, using mouse dendritic and T cells as a model, that SUnSET offers a technical alternative to classical radioactive labeling methods for the study of mRNA translation and cellular activation.

View Article and Find Full Text PDF

In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control immunity. Here, we show that in response to Lipopolysaccharides (LPS), several microRNAs (miRNAs) are regulated in human monocyte-derived dendritic cells. Among these miRNAs, miR-155 is highly up-regulated during maturation.

View Article and Find Full Text PDF

In response to Toll-like receptor ligands, dendritic cells (DCs) dramatically enhance their antigen presentation capacity by stabilizing at the cell-surface MHC II molecules. We demonstrate here that, in human monocyte-derived DCs, the RING-CH ubiquitin E3 ligase, membrane-associated RING-CH I (MARCH I), promotes the ubiquitination of the HLA-DR beta-chain. Thus, in nonactivated DCs, MARCH I induces the surface internalization of mature HLA-DR complexes, therefore reducing their stability and levels.

View Article and Find Full Text PDF

In response to inflammatory stimulation, dendritic cells (DCs) have a remarkable pattern of differentiation (maturation) that exhibits specific mechanisms to control antigen processing and presentation. Here, we show that in response to lipopolysaccharides, protein synthesis is rapidly enhanced in DCs. This enhancement occurs via a PI3K-dependent signaling pathway and is key for DC activation.

View Article and Find Full Text PDF