Publications by authors named "Maurizio Bergamino"

Background: Mild Cognitive Impairment (MCI) represents an intermediate stage between normal age‐related cognitive decline and more severe degenerative conditions such as Alzheimer's disease. Understanding the differences between Early‐MCI (EMCI) and Late‐MCI (LMCI) is crucial to facilitate early diagnosis and future clinical interventions. This study employed free‐water diffusion tensor imaging (FW‐DTI) to explore the differences in white matter alterations between EMCI and LMCI.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focused on improving a multi-contrast, multi-echo fMRI technique called SAGE, combining both spin and gradient echo methods to enhance sensitivity and spatial accuracy while reducing signal dropout.
  • - Researchers tested SAGE-fMRI across different setups with five echo types, evaluating performance on working memory and vision tasks in healthy participants to identify the best methods for analyzing brain activity.
  • - Results showed that SAGE-fMRI offered higher blood oxygen level-dependent sensitivity and contrast-to-noise ratio compared to traditional single-echo fMRI, especially in challenging brain regions, thus yielding more reliable activation maps.
View Article and Find Full Text PDF

Background: Mild Cognitive Impairment (MCI) is a transitional stage from normal aging to dementia, characterized by noticeable changes in cognitive function that do not significantly impact daily life. Diffusion MRI (dMRI) plays a crucial role in understanding MCI by assessing white matter integrity and revealing early signs of axonal degeneration and myelin breakdown before cognitive symptoms appear.

Methods: This study utilized the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to compare white matter microstructure in individuals with MCI to cognitively normal (CN) individuals, employing advanced dMRI techniques such as diffusion kurtosis imaging (DKI), mean signal diffusion kurtosis imaging (MSDKI), and free water imaging (FWI).

View Article and Find Full Text PDF

Prior studies have reported inconsistent results regarding the relationships between the integrity of the fornix and parahippocampal cingulum and both memory performance and longitudinal change in performance. In the present study, we examined associations in a sample of cognitively healthy older adults between free water-corrected fractional anisotropy (FA) metrics derived from the fornix and cingulum, baseline memory performance, and 3-year memory change. Neither fornix nor cingulum FA correlated with memory performance at baseline.

View Article and Find Full Text PDF

Introduction: Cognitive impairment (CI) due to Alzheimer's disease (AD) encompasses a decline in cognitive abilities and can significantly impact an individual's quality of life. Early detection and intervention are crucial in managing CI, both in the preclinical and prodromal stages of AD prior to dementia.

Methods: In this preliminary study, we investigated differences in resting-state functional connectivity and dynamic network properties between 23 individual with CI due to AD based on clinical assessment and 15 healthy controls (HC) using Independent Component Analysis (ICA) and Dominant-Coactivation Pattern (d-CAP) analysis.

View Article and Find Full Text PDF

Background: Dementia is characterized by a cognitive decline in memory and other domains that lead to functional impairments. As people age, subjective memory complaints (SMC) become common, where individuals perceive cognitive decline without objective deficits on assessments. SMC can be an early sign and may precede amnestic mild cognitive impairment (MCI), which frequently advances to Alzheimer's disease (AD).

View Article and Find Full Text PDF

Background: Essential tremor (ET) is a common slowly-progressive neurologic disorder. It is predominantly characterized by kinetic tremors involving bilateral upper limbs. Although ET shares motor similarities with Parkinson disease (PD), there is no known relationship between ET and PD.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is an idiopathic disease of the central nervous system characterized by both motor and non-motor symptoms. It is the second most common neurodegenerative disease. Magnetic resonance imaging (MRI) can reveal underlying brain changes associated with PD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) has been associated with amyloid and tau pathology, as well as neurodegeneration. Beyond these hallmark features, white matter microstructural abnormalities have been observed using MRI. The objective of this study was to assess grey matter atrophy and white matter microstructural changes in a preclinical mouse model of AD (3xTg-AD) using voxel-based morphometry (VBM) and free-water (FW) diffusion tensor imaging (FW-DTI).

View Article and Find Full Text PDF

Introduction: Degeneration of cortical cholinergic projections from the nucleus basalis of Meynert (NBM) is characteristic of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), whereas involvement of cholinergic projections from the pedunculopontine nucleus (PPN) to the thalamus is less clear.

Methods: We studied both cholinergic projection systems using a free water-corrected diffusion tensor imaging (DTI) model in the following cases: 46 AD, 48 DLB, 35 mild cognitive impairment (MCI) with AD, 38 MCI with Lewy bodies, and 71 controls.

Results: Free water in the NBM-cortical pathway was increased in both dementia and MCI groups compared to controls and associated with cognition.

View Article and Find Full Text PDF

Skill retention is important for motor rehabilitation outcomes. Recent work has demonstrated that delayed visuospatial memory performance may predict motor skill retention in older and neuropathological populations. White matter integrity between parietal and frontal cortices may explain variance in upper-extremity motor learning tasks and visuospatial processes.

View Article and Find Full Text PDF

Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson's disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson's disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain.

View Article and Find Full Text PDF

Background: Advanced diffusion-based MRI biomarkers may provide insight into microstructural and perfusion changes associated with neurodegeneration and cognitive decline.

Purpose: To assess longitudinal microstructural and perfusion changes using apparent diffusion coefficient (ADC) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) parameters in cognitively impaired (CI) and healthy control (HC) groups.

Study Type: Prospective/longitudinal.

View Article and Find Full Text PDF

White matter integrity and structural connectivity may be altered in mild cognitive impairment (MCI), and these changes may closely reflect decline in specific cognitive domains. Multi-shell diffusion data in healthy control (HC, = 31) and mild cognitive impairment (MCI, = 19) cohorts were downloaded from the ADNI3 database. The data were analyzed using an advanced approach to assess both white matter microstructural integrity and structural connectivity.

View Article and Find Full Text PDF

Background: Imaging biomarkers are increasingly used in Alzheimer's disease (AD), and the identification of sex differences using neuroimaging may provide insight into disease heterogeneity, progression, and therapeutic targets.

Objective: The purpose of this study was to investigate differences in grey matter (GM) volume and white matter (WM) microstructural disorganization between males and females with AD using voxel-based morphometry (VBM) and free-water-corrected diffusion tensor imaging (FW-DTI).

Methods: Data were downloaded from the OASIS-3 database, including 158 healthy control (HC; 86 females) and 46 mild AD subjects (24 females).

View Article and Find Full Text PDF

Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is adversely impacted by contrast agent leakage in brain tumors. Using simulations, we previously demonstrated that multi-echo DSC-MRI protocols provide improvements in contrast agent dosing, pulse sequence flexibility, and rCBV accuracy. The purpose of this study is to assess the performance of dual-echo acquisitions in patients with brain tumors (n = 59).

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) based diffusion tensor imaging (DTI) can assess white matter (WM) integrity through several metrics, such as fractional anisotropy (FA), axial/radial diffusivities (AxD/RD), and mode of anisotropy (MA). Standard DTI is susceptible to the effects of extracellular free water (FW), which can be removed using an advanced free-water DTI (FW-DTI) model. The purpose of this study was to compare standard and FW-DTI metrics in the context of Alzheimer's disease (AD).

View Article and Find Full Text PDF

White matter microstructural changes in Alzheimer's disease (AD) are often assessed using fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI). FA depends on the acquisition and analysis methods, including the fitting algorithm. In this study, we compared FA maps from different acquisitions and fitting algorithms in AD, mild cognitive impairment (MCI), and healthy controls (HCs) using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is associated with reductions in white matter microstructural integrity as measured by fractional anisotropy (FA), an index derived from diffusion tensor imaging (DTI). The neurotropic herpesvirus, human cytomegalovirus (HCMV), is a major cause of white matter pathology in immunosuppressed populations but its relationship with FA has never been tested in MDD despite the presence of inflammation and weakened antiviral immunity in a subset of depressed patients. We tested the relationship between FA and HCMV infection in two independent samples consisting of 176 individuals with MDD and 44 healthy controls (HC) (Discovery sample) and 88 participants with MDD and 48 HCs (Replication sample).

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infection is associated with neuropathology in patients with impaired immunity and/or inflammatory diseases. However, the association between gray matter volume (GMV) and HCMV has never been examined in major depressive disorder (MDD) despite the presence of inflammation and impaired viral immunity in a subset of patients. We tested this relationship in two independent samples consisting of 179 individuals with MDD and 41 healthy controls (HC) (sample 1) and 124 MDD participants and 148 HCs (sample 2).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects aging populations. Current MRI techniques are often limited in their sensitivity to underlying neuropathological changes.

Purpose: To characterize differences in voxel-based morphometry (VBM), apparent diffusion coefficient (ADC), and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) metrics in aging populations.

View Article and Find Full Text PDF

Structural brain white matter (WM) changes such as axonal caliber, density, myelination, and orientation, along with WM-dependent structural connectivity, may be impacted early in Parkinson disease (PD). Diffusion magnetic resonance imaging (dMRI) has been used extensively to understand such pathological WM changes, and the focus of this systematic review is to understand both the methods utilized and their corresponding results in the context of early-stage PD. Diffusion tensor imaging (DTI) is the most commonly utilized method to probe WM pathological changes.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) has often been used to examine white matter (WM) tract abnormalities in depressed subjects, but these studies have yielded inconsistent results, probably, due to gender composition or small sample size. In this study, we applied different analysis pipelines to a relatively large sample of individuals with depression to determine whether previous findings in depression can be replicated with these pipelines. We used a "standard" DTI algorithm and maps computed through a free-water (FW) corrected DTI.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is one of the most significant contributors to the global burden of illness. Diffusion tensor imaging (DTI) is a procedure that has been used in several studies to characterize abnormalities in white matter (WM) microstructural integrity in MDD. These studies, however, have provided divergent findings, potentially due to the large variety of methodological alternatives available in conducting DTI research.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) holds promise for developing our understanding of white-matter pathology in major depressive disorder (MDD). Variable findings in DTI-based investigations of MDD, however, have thwarted development of this literature. Effects of extra-cellular free-water on the sensitivity of DTI metrics could account for some of this inconsistency.

View Article and Find Full Text PDF