Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis.
View Article and Find Full Text PDFChronic stress is known to perturb serotonergic regulation in the brain, leading to mood, learning and memory impairments and increasing the risk of developing mood disorders. The influence of the gut microbiota on serotonergic regulation in the brain has received increased attention recently, justifying the investigation of the role of diet on the gut and the brain in mood disorders. Here, using a 4-week chronic unpredictable mild stress (CUMS) model in mice, we aimed to investigate the effects of a high-fat high-glycaemic index (HFD) and high-fibre fruit & vegetable "superfood" (SUP) modifications of a semi-pure AIN93M diet on behaviour, serotonin synthesis and metabolism pathway regulation in the brain and the gut, as well as the gut microbiota and the peripheral adrenal medullary system.
View Article and Find Full Text PDFAnxiety and depressive disorders are closely associated; however, the pathophysiology of these disorders remains poorly understood. Further exploration of the mechanisms involved in anxiety and depression such as the stress response may provide new knowledge that will contribute to our understanding of these disorders. Fifty-eight 8-12-week-old C57BL6 mice were separated into experimental groups by sex as follows: male controls ( = 14), male restraint stress ( = 14), female controls ( = 15) and female restraint stress ( = 15).
View Article and Find Full Text PDFStress hormones such as cortisol play a critical role in depressive disorders. Therefore, corticosterone has been used to develop a depression model in animals. Our previous studies found that the precursor of brain-derived neurotrophic factor (proBDNF) and its receptors are upregulated in depression in human and animal models.
View Article and Find Full Text PDF