Organic thin film deposition presents a multiplicity of challenges. Most notably, layer thickness control, homogeneity and subsequent characterization have been not cleared yet. Phospholipid bilayers are frequently used to model cell membranes.
View Article and Find Full Text PDFFT-IR and Raman spectra of bis(4-aminophenyl)diphenylsilane (DIA) and a dicarboxylic acid containing the imide function and a L-alanine moiety (L-ALA) and their resultant polymer (PALA) were recorded in the 500-4000 cm(-1) and 400-3800 cm(-1) regions, respectively. The optically active poly(imide-amide) obtained has two sp(3) carbons in the main chain, favoring its flexibility. Raman analysis identifies the fluorescence produced by the electronic conjugation between the aromatic rings and the amidic groups, which affects the molecular fine structure.
View Article and Find Full Text PDF1,2-dipalmitoyl-sn-3-phosphoglycerocholine membranes were deposited onto a silicon substrate (Si/SiO(2)) using physical vapor deposition with in situ ellipsometric thickness control. Along several heating cycles it was possible to identify well-defined boundaries for gel, ripple, liquid crystalline, and fluid-disordered phases. Particularly, the second order transition between gel and ripple phase was clearly identified in the range of ~28-34 °C using Raman spectroscopy.
View Article and Find Full Text PDF