Chagas disease, a silent but widespread disease that mainly affects a socioeconomically vulnerable population, lacks innovative safe drug therapy. The available drugs, benznidazole and nifurtimox, are more than fifty years old, have limited efficacy, and carry harmful side effects, highlighting the need for new therapeutics. This study presents two new series of pyrazole-thiadiazole compounds evaluated for trypanocidal activity using cellular models predictive of efficacy.
View Article and Find Full Text PDFTrichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers.
View Article and Find Full Text PDFOxazolines are important heterocyclic systems due to their biological activities, such as antibacterial, antimalarial, anticancer, antiviral, anti-inflammatory, antifungal, antipyretic, and antileishmanial. They have been widely applied as chiral auxiliaries, polymers, catalysts, protecting groups, building blocks, and ligands in asymmetric synthesis. Due to their importance, many synthetic routes to prepare oxazoline moieties have been investigated and developed by researchers around the world.
View Article and Find Full Text PDFCurr Org Synth
May 2023
Background: A series of new eight 2-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1,4,5,6-tetrahydropyrimidines 1(a-h) were synthesized by microwave irradiation technique. In vitro phenotypic screening was performed to evaluate the effect of these compounds on intracellular amastigotes forms of Trypanosoma cruzi, the etiological agent of Chagas disease.
Methods: Compounds 1(a-h) were synthesized from pyrazole-carbonitriles 2(a-h) employing microwave irradiation (50W) for 10-20 minutes.
Pharmaceutics
May 2022
Chagas disease, a century-old disease that mainly affects the impoverished population in Latin America, causes high morbidity and mortality in endemic countries. The available drugs, benznidazole (Bz) and nifurtimox, have limited effectiveness and intense side effects. Drug repurposing, and the development of new chemical entities with potent activity against Trypanosoma cruzi, are a potential source of therapeutic options.
View Article and Find Full Text PDFMolecules
November 2021
Chagas disease, a chronic and silent disease caused by , is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline.
View Article and Find Full Text PDFThe pyrazole nucleus is an aromatic azole heterocycle with two adjacent nitrogen atoms. Pyrazole derivatives have exhibited a broad spectrum of biological activities, and approved pyrazole-containing drugs include celecoxib, antipyrine, phenylbutazone, rimonabant, and dipyrone. Many research groups have synthesized and evaluated pyrazoles against several biological agents.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2014
An orally delivered, safe and effective treatment for leishmaniasis is an unmet medical need. Azoles and the pyrazolylpyrimidine allopurinol present leishmanicidal activity, but their clinical efficacies are variable. Here, we describe the activity of the new pyrazolyltetrazole hybrid, 5-[5-amino-1-(4'-methoxyphenyl)1H-pyrazole-4-yl]1H-tetrazole (MSN20).
View Article and Find Full Text PDFA new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4a-m) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3a-m) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line.
View Article and Find Full Text PDFChem Biol Drug Des
March 2014
In this research, a series of substituted 5-(5-amino-1-aryl-1H-pyrazol-4-yl)-1H-tetrazoles were synthesized and evaluated for in vitro antileishmanial activity. Among the derivatives, examined compounds 3b and 3l exhibited promising activity against promastigotes and amastigotes forms of Leishmania amazonensis. The cytotoxicity of these compounds was evaluated on murine cells, giving access to the corresponding selectivity index (SI).
View Article and Find Full Text PDFBackground: Herpes simplex virus type-1 (HSV-1) is the primary cause of facial lesions (mouth, lips, and eyes) in humans. The widespread use of acyclovir and nucleoside analogues has led to emergence of HSV strains that are resistant to these drugs. Recently, non-nucleoside anti-HSV compounds have received considerable attention.
View Article and Find Full Text PDFA series of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazoles (4a-g) and 5-amino-1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazoles (5a-g) were synthesized and evaluated in vitro against three Leishmania species: L. amazonensis, L. braziliensis and L.
View Article and Find Full Text PDF