We previously demonstrated that the NO-receptor soluble guanylyl cyclase (GC1) has the ability to transnitrosate other proteins in a reaction that involves, in some cases, oxidized Thioredoxin 1 (oTrx1). This transnitrosation cascade was established and we identified by mass spectrometry and mutational analysis Cys 610 (C610) of GC1 α-subunit as a major donor of S-nitrosothiols (SNO). To assay the relevance of GC1 transnitrosation under physiological conditions and in oxidative pathologies, we studied a knock-in mouse in which C610 was replaced with a serine (KI αC ) under basal or angiotensin II (Ang II)-treated conditions.
View Article and Find Full Text PDF