Publications by authors named "Mauricio Ibanez-Mejia"

Article Synopsis
  • The study of single crystal paleointensity (SCP) indicates that the Moon did not have a sustained core dynamo, with some Apollo basalts suggesting an episodic dynamo instead.
  • Analysis of ancient Apollo basalts reveals they record unrealistic magnetization levels and indicate null magnetic fields, implying they do not support the idea of a long-lasting lunar dynamo.
  • The findings suggest that the lunar surface may contain evidence of Earth's early atmosphere, potentially trapped in regolith, making it a valuable location for future research.
View Article and Find Full Text PDF

Plate tectonics is a fundamental factor in the sustained habitability of Earth, but its time of onset is unknown, with ages ranging from the Hadaean to Proterozoic eons. Plate motion is a key diagnostic to distinguish between plate and stagnant-lid tectonics, but palaeomagnetic tests have been thwarted because the planet's oldest extant rocks have been metamorphosed and/or deformed. Herein, we report palaeointensity data from Hadaean-age to Mesoarchaean-age single detrital zircons bearing primary magnetite inclusions from the Barberton Greenstone Belt of South Africa.

View Article and Find Full Text PDF

Paleomagnetism can elucidate the origin of inner core structure by establishing when crystallization started. The salient signal is an ultralow field strength, associated with waning thermal energy to power the geodynamo from core-mantle heat flux, followed by a sharp intensity increase as new thermal and compositional sources of buoyancy become available once inner core nucleation (ICN) commences. Ultralow fields have been reported from Ediacaran (~565 Ma) rocks, but the transition to stronger strengths has been unclear.

View Article and Find Full Text PDF

Determining the presence or absence of a past long-lived lunar magnetic field is crucial for understanding how the Moon's interior and surface evolved. Here, we show that Apollo impact glass associated with a young 2 million-year-old crater records a strong Earth-like magnetization, providing evidence that impacts can impart intense signals to samples recovered from the Moon and other planetary bodies. Moreover, we show that silicate crystals bearing magnetic inclusions from Apollo samples formed at ∼3.

View Article and Find Full Text PDF

Zirconium is a commonly used elemental tracer of silicate differentiation, yet its stable isotope systematics remain poorly known. Accessory phases rich in Zr such as zircon and baddeleyite may preserve a unique record of Zr isotope behavior in magmatic environments, acting both as potential drivers of isotopic fractionation and recorders of melt compositional evolution. To test this potential, we measured the stable Zr isotope composition of 70 single zircon and baddeleyite crystals from a well-characterized gabbroic igneous cumulate.

View Article and Find Full Text PDF