Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKβ deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity.
View Article and Find Full Text PDFHypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression.
View Article and Find Full Text PDFIn rodents, susceptibility to diet-induced obesity requires microglial activation, but the molecular components of this pathway remain incompletely defined. Prostaglandin PGE2 levels increase in the mediobasal hypothalamus during high-fat-diet (HFD) feeding, and the PGE2 receptor EP4 regulates microglial activation state and phagocytic activity, suggesting a potential role for microglial EP4 signaling in obesity pathogenesis. To test the role of microglial EP4 in energy balance regulation, we analyzed the metabolic phenotype in a microglia-specific EP4 knockout (MG-EP4 KO) mouse model.
View Article and Find Full Text PDFBoth hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO.
View Article and Find Full Text PDFDietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain.
View Article and Find Full Text PDFFemale mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression.
View Article and Find Full Text PDFEffectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding.
View Article and Find Full Text PDFBody weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis.
View Article and Find Full Text PDFType 2 diabetes (T2D) is among the most common and costly disorders worldwide. The goal of current medical management for T2D is to transiently ameliorate hyperglycemia through daily dosing of one or more antidiabetic drugs. Hypoglycemia and weight gain are common side effects of therapy, and sustained disease remission is not obtainable with nonsurgical approaches.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2016
Previous studies implicate the hypothalamic ventromedial nucleus (VMN) in glycemic control. Here, we report that selective inhibition of the subset of VMN neurons that express the transcription factor steroidogenic-factor 1 (VMN(SF1) neurons) blocks recovery from insulin-induced hypoglycemia whereas, conversely, activation of VMN(SF1) neurons causes diabetes-range hyperglycemia. Moreover, this hyperglycemic response is reproduced by selective activation of VMN(SF1) fibers projecting to the anterior bed nucleus of the stria terminalis (aBNST), but not to other brain areas innervated by VMN(SF1) neurons.
View Article and Find Full Text PDFPurpose Of Review: Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments.
Recent Findings: In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain.
Several lines of evidence implicate excess glucagon secretion in the elevated rates of hepatic glucose production (HGP), hyperglycemia, and ketosis characteristic of uncontrolled insulin-deficient diabetes (uDM), but whether hyperglucagonemia is required for hyperglycemia in this setting is unknown. To address this question, adult male Wistar rats received either streptozotocin (STZ) to induce uDM (STZ-DM) or vehicle and remained nondiabetic. Four days later, animals received daily subcutaneous injections of either the synthetic GLP-1 receptor agonist liraglutide in a dose-escalating regimen to reverse hyperglucagonemia or its vehicle for 10 days.
View Article and Find Full Text PDFPremature ovarian failure (POF) affects 1% of women in reproductive age, but its etiology remains uncertain. Whereas kisspeptins, the products of Kiss1 that act via Kiss1r (aka, Gpr54), are known to operate at the hypothalamus to control GnRH/gonadotropin secretion, additional actions at other reproductive organs, including the ovary, have been proposed. Yet, their physiological relevance is still unclear.
View Article and Find Full Text PDFNeurotrophins (NTs), once believed to be neural-specific trophic factors, are now known to also provide developmental cues to non-neural cells. In the ovary, NTs contribute to both the formation and development of follicles. Here we show that oocyte-specific deletion of the Ntrk2 gene that encodes the NTRK2 receptor (NTRK2) for neurotrophin-4/5 and brain-derived neurotrophic factor (BDNF) results in post-pubertal oocyte death, loss of follicular organization, and early adulthood infertility.
View Article and Find Full Text PDFIn rodent models of type 1 diabetes, leptin administration into brain ventricles normalizes blood glucose at doses that have no effect when given peripherally. The ventromedial nucleus of the hypothalamus (VMN) is a potential target for leptin's antidiabetic effects because leptin-sensitive neurons in this brain area are implicated in glucose homeostasis. To test this hypothesis, we injected leptin directly into the bilateral VMN of rats with streptozotocin-induced uncontrolled diabetes mellitus.
View Article and Find Full Text PDFTropomyosin-related kinase (TRK) receptor B (TRKB) mediates the supportive actions of neurotrophin 4/5 and brain-derived neurotrophic factor on early ovarian follicle development. Absence of TRKB receptors reduces granulosa cell (GC) proliferation and delays follicle growth. In the present study, we offer mechanistic insights into this phenomenon.
View Article and Find Full Text PDFExcessive nerve growth factor (NGF) production by the ovary, achieved via a transgenic approach, results in arrested antral follicle growth, reduced ovulatory capacity, and a predisposition to cyst formation in response to mildly elevated LH levels. Two salient features in these mutant mice (termed 17NF) are an elevated production of 17α-hydroxyprogesterone (17-OHP(4)), testosterone, and estradiol (E(2)) in response to gonadotropins, and an increased frequency of granulosa cell (GC) apoptosis. In this study, we show that the increase in steroidal response is associated with enhanced expression of Cyp17a1, Hsd17b, and Cyp19a1, which encode the enzymes catalyzing the synthesis of 17-OHP(4), testosterone, and E(2) respectively.
View Article and Find Full Text PDFRecent studies have demonstrated that neurotrophins (NTs) and their NTRK tyrosine kinase receptors, thought to be exclusively required for the development of the nervous system, are also involved in controlling ovarian development. Here, we show that primordial follicle formation is decreased in the absence of nerve growth factor (NGF) or its receptor NTRK1, and in the absence of NTRK2, the receptor for neurotrophin-4 (NTF4) and brain-derived neurotrophic factor (BDNF). This deficiency is not due to premature oocyte loss, because the ovaries of Ntrk1(-/-) and Ntrk2(-/-) mice do not show an increased rate of oocyte death antedating the initiation of folliculogenesis.
View Article and Find Full Text PDFA single injection of estradiol valerate (EV) to 14-day-old rats (when the ovarian follicle population has been already established) disrupts cyclicity, increases the activity of key enzymes of androgen biosynthesis, and develops polycystic ovary by a causally related increase in ovarian noradrenaline (NA). The current study examined an early window of ovarian development to look for a specific stage of development at which estradiol can induce such changes in sympathetic activity and follicular development. A single dose of EV applied to rats before the first 12 h of life rapidly increases (after 24 h) the ovarian expression of nerve growth factor (Ngfb) and p75 low-affinity neurotrophic receptor (Ngfr) mRNAs.
View Article and Find Full Text PDF