Publications by authors named "Mauricio D Coutinho Neto"

Proline, along with its derivatives, has been employed as an efficient organocatalyst for aldol reactions, with the ability to promote the creation of stereoselective C-C bonds. Even though the Houk-List transition state model is able to explain the stereoselectivity observed when proline is used as a catalyst, few studies investigate the role of microheterogeneous media in modulating the reaction outcome. In this work, molecular dynamics and electronic structure calculations were used to investigate the aldol reaction in the condensed phase.

View Article and Find Full Text PDF

Applying surfactants to reduce the interfacial tension (IFT) on water/oil interfaces is a proven technique. The search for new surfactants and delivery strategies is an ongoing research area with applications in many fields such as drug delivery through nanoemulsions and enhanced oil recovery. Experimentally, the combination of hyperbranched polyglycerol (HPG) with cetyltrimethylammonium bromide (CTAB) substantially reduced the observed IFT of oil/water interface, 0.

View Article and Find Full Text PDF

Context: Curcumin is a popular food additive around the world whose medicinal properties have been known since ancient times. The literature has recently highlighted several biological properties, but besides the health-related usages, its natural yellowish color may also be helpful for light-harvesting applications. This research aims to close a knowledge gap regarding the photophysical description of curcumin and its metallic complexes.

View Article and Find Full Text PDF

The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection.

View Article and Find Full Text PDF

Four amphiphilic peptides were synthesized, characterized, and evaluated regarding their efficiency in the catalysis of direct aldol reactions in water. The lipopeptides differ by having a double lipid chain and a guanidinium pyrrole group functionalizing one Lys side chain. All the samples are composed of the amino acids l-proline (P), l-arginine (R), or l-lysine (K) functionalized with the cationic guanidiniocarbonyl pyrrole unit (GCP), l-tryptophan (W), and l-glycine (G), covalently linked to one or two long aliphatic chains, leading to surfactant-like designs with controlled proline protonation state and different stereoselectivity.

View Article and Find Full Text PDF

There have been significant advances in the biological use of hypervalent selenium and tellurium compounds as cysteine protease inhibitors. However, the full understanding of their reaction mechanisms for and cysteine proteases inhibition is still elusive. Kinetic studies suggest an irreversible inhibition mechanism, which was explained by forming a covalent bond between the enzyme sulfhydryl group and the chalcogen atom at its hypervalent state (+4).

View Article and Find Full Text PDF

Methylene blue [3,7-Bis(di-methylamino) phenothiazin-5-ium chloride] is a phenothiazine dye with applications as a sensitizer for photodynamic therapy, photoantimicrobials, and dye-sensitized solar cells. Time-dependent density functional theory (TDDFT), based on (semi)local and global hybrid exchange-correlation functionals, fails to correctly describe its spectral features due to known limitations for describing optical excitations of π-conjugated systems. Here, we use TDDFT with a non-empirical optimally tuned range-separated hybrid functional to explore the optical excitations of gas phase and solvated methylene blue.

View Article and Find Full Text PDF

Excited state intramolecular proton transfer (ESIPT) is a photoinduced process strongly associated to hydrogen bonding within a molecular framework. In this manuscript, we computed potential energy data using Time Dependent Density Functional Theory (TDDFT) for triphenyl-substituted heterocycles, which evidenced an energetically favorable proton transfer on the excited state (i.e.

View Article and Find Full Text PDF

The effects of the environment in nanoscopic materials can play a crucial role in device design. Particularly in biosensors, where the system is usually embedded in a solution, water and ions have to be taken into consideration in atomistic simulations of electronic transport for a realistic description of the system. In this work, we present a methodology that combines quantum mechanics/molecular mechanics methods (QM/MM) with the nonequilibrium Green's function framework to simulate the electronic transport properties of nanoscopic devices in the presence of solvents.

View Article and Find Full Text PDF

The low toxicity and environmentally compatible ionic liquids (ILs) are alternatives to the toxic and harmful cyanide-based baths used in industrial silver electrodeposition. Here, we report the successful galvanostatic electrodeposition of silver films using the air and water stable ILs 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIM]TfO) and 1-H-3-methylimidazolium hydrogen sulphate ([HMIM(+)][HSO4(-)]) as solvents and AgTfO as the source of silver. The electrochemical deposition parameters were thoughtfully studied by cyclic voltammetry before deposition.

View Article and Find Full Text PDF

Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions.

View Article and Find Full Text PDF

We report for the first time on the self-assembly of nanostructures composed exclusively of alternating positively charged and hydrophobic amino acids. A novel arginine/phenylalanine octapeptide, RF8, was synthesized. Because the low hydrophobicity of this sequence makes its spontaneous ordering through solution-based methods difficult, a recently proposed solid-vapor approach was used to obtain nanometric architectures on ITO/PET substrates.

View Article and Find Full Text PDF

The adsorption of SPADNS (trisodium salt of 2-(p-sulfophenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid) onto resins XAD 2, XAD 7 and silica gel was studied in the presence and in the absence of the cationic surfactant CTAB (cetyl trimethylammonium bromide). At a ratio of 2.5 CTAB to 1 SPADNS, the surfactant caused a marked increase in SPADNS adsorption.

View Article and Find Full Text PDF

Full-dimensional multiconfigurational time-dependent Hartree calculations on the tunneling splitting of the vibrational ground state and the low lying excited states of malonaldehyde are presented. Methodological developments utilizing the symmetry of double well systems for the efficient calculation of tunneling splittings are described and discussed. Important aspects of the theory underlying the previously communicated results for the ground state tunneling splitting [M.

View Article and Find Full Text PDF

We present ab initio molecular dynamics studies on liquid water using density functional theory in conjunction with either dispersion-corrected atom-centered potentials or empirical van der Waals corrections. Our results show that improving the description of van der Waals interactions in DFT-GGA leads to a softening of liquid water's structure with higher mobility. The results obtained with dispersion-corrected atom-centered potentials are especially encouraging.

View Article and Find Full Text PDF

Within the framework of Kohn-Sham density functional theory, interaction energies of hydrogen bonded and pi-pi stacked supramolecular complexes of aromatic heterocycles, nucleobase pairs, and complexes of nucleobases with the anti-cancer agent ellipticine as well as its derivatives are evaluated. Dispersion-corrected atom-centered potentials (DCACPs) are employed together with a generalized gradient approximation to the exchange correlation functional. For all systems presented, the DCACP calculations are in very good agreement with available post Hartree-Fock quantum chemical results.

View Article and Find Full Text PDF

Interaction energies and structural properties of van der Waals complexes of aliphatic hydrocarbons molecules and crystals of aromatic hydrocarbon compounds are studied using density functional theory augmented with dispersion corrected atom centered potentials (DCACPs). We compare the performance of two sets of DCACPs, (a) DCACP-MP2, a correction for carbon only, generated using MP2 reference data and a penalty functional that includes only equilibrium properties and (b) DCACP-CCSD(T), a set that has been calibrated against CCSD(T) reference data using a more elaborate penalty functional that explicitly takes into account some long-range properties and uses DCACP corrections for hydrogen and carbon atoms. The agreement between our results and high level ab initio or experimental data illustrates the transferability of the DCACP scheme for the gas and condensed phase as well as for different hybridization states of carbon.

View Article and Find Full Text PDF

Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem.

View Article and Find Full Text PDF

Benchmark calculations of the tunneling splitting in malonaldehyde using the full dimensional potential proposed by Yagi et al. are reported. Two exact quantum dynamics methods are used: the multiconfigurational time-dependent Hartree (MCTDH) approach and the diffusion Monte Carlo based projection operator imaginary time spectral evolution (POITSE) method.

View Article and Find Full Text PDF