Publications by authors named "Mauricio Cruz-Loya"

Temperature responses of many biological traits-including population growth, survival, and development-are described by thermal performance curves (TPCs) with phenomenological models like the Briere function or mechanistic models related to chemical kinetics. Existing TPC models are either simple but inflexible in shape, or flexible yet difficult to interpret in biological terms. Here we present flexTPC: a model that is parameterized exclusively in terms of biologically interpretable quantities, including the thermal minimum, optimum, and maximum, and the maximum trait value.

View Article and Find Full Text PDF
Article Synopsis
  • Global temperature rise affects vector-borne diseases, with mosquitoes being particularly sensitive to temperature changes.
  • In New York State, researchers explored how different mosquito populations respond to varying temperatures, using new data to create predictive models for West Nile virus (WNV) transmission.
  • Findings reveal that differences in life history traits among mosquito populations can lead to notable geographic variations in WNV transmission rates, highlighting the impact of climate change on disease spread.
View Article and Find Full Text PDF

Objective: A personalized simulation tool, p-THYROSIM, was developed (1) to better optimize replacement LT4 and LT4+LT3 dosing for hypothyroid patients, based on individual hormone levels, BMIs, and gender; and (2) to better understand how gender and BMI impact thyroid dynamical regulation over time in these patients.

Methods: p-THYROSIM was developed by (1) modifying and refining THYROSIM, an established physiologically based mechanistic model of the system regulating serum T3, T4, and TSH level dynamics; (2) incorporating sex and BMI of individual patients into the model; and (3) quantifying it with 3 experimental datasets and validating it with a fourth containing data from distinct male and female patients across a wide range of BMIs. For validation, we compared our optimized predictions with previously published results on optimized LT4 monotherapies.

View Article and Find Full Text PDF

Temperature variation-through time and across climatic gradients-affects individuals, populations, and communities. Yet how the thermal response of biological systems is altered by environmental stressors is poorly understood. Here, we quantify two key features-optimal temperature and temperature breadth-to investigate how temperature responses vary in the presence of antibiotics.

View Article and Find Full Text PDF

The rapid increase of multi-drug resistant bacteria has led to a greater emphasis on multi-drug combination treatments. However, some combinations can be suppressive-that is, bacteria grow faster in some drug combinations than when treated with a single drug. Typically, when studying interactions, the overall effect of the combination is only compared with the single-drug effects.

View Article and Find Full Text PDF

Understanding how stressors combine to affect population abundances and trajectories is a fundamental ecological problem with increasingly important implications worldwide. Generalisations about interactions among stressors are challenging due to different categorisation methods and how stressors vary across species and systems. Here, we propose using a newly introduced framework to analyse data from the last 25 years on ecological stressor interactions, for example combined effects of temperature, salinity and nutrients on population survival and growth.

View Article and Find Full Text PDF

Bacteria have evolved diverse mechanisms to survive environments with antibiotics. Temperature is both a key factor that affects the survival of bacteria in the presence of antibiotics and an environmental trait that is drastically increasing due to climate change. Therefore, it is timely and important to understand links between temperature changes and selection of antibiotic resistance.

View Article and Find Full Text PDF

Interactions and emergent processes are essential for research on complex systems involving many components. Most studies focus solely on pairwise interactions and ignore higher-order interactions among three or more components. To gain deeper insights into higher-order interactions and complex environments, we study antibiotic combinations applied to pathogenic and obtain unprecedented amounts of detailed data (251 two-drug combinations, 1512 three-drug combinations, 5670 four-drug combinations, and 13608 five-drug combinations).

View Article and Find Full Text PDF

Environmental factors like temperature, pressure, and pH partly shaped the evolution of life. As life progressed, new stressors (e.g.

View Article and Find Full Text PDF