Several clinical issues are associated with reduced oxygen delivery to tissues due to impaired vascular perfusion; moreover, organs procured for transplantation are subjected to severe hypoxia during preservation. Consequently, alternative tissue oxygenation is an active field in biomedical research where several innovative approaches have been recently proposed. Among these, intravascular photosynthesis represents a promising approach as it relies on the intrinsic capacity of certain microorganisms to produce oxygen upon illumination.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
Aerobic metabolism relies on external oxygen production through photosynthesis and its subsequent transport into each cell of the body via the cardiorespiratory system. This mechanism has successfully evolved over millions of years, enabling animals to inhabit most environments on Earth. However, the insufficient oxygen supply leads to several clinical problems, ranging from non-healing wounds to tumor resistance to therapy.
View Article and Find Full Text PDFAs animal cells cannot produce oxygen, erythrocytes are responsible for gas interchange, being able to capture and deliver oxygen upon tissue request. Interestingly, several other cells in nature produce oxygen by photosynthesis, raising the question of whether they could circulate within the vascular networks, acting as an alternative source for oxygen delivery. To address this long-term goal, here some physical and mechanical features of the photosynthetic microalga Chlamydomona reinhardtii were studied and compared with erythrocytes, revealing that both exhibit similar size and rheological properties.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2023
Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for organ preservation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2021
Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: ) soluble guanylate cyclase-protein kinase G and ) -nitrosylation (NO-induced modification of free-thiol cysteines in proteins).
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a fatal disease that causes cardiomyopathy and is associated with oxidative stress. In the heart, oxidative stress interferes with the location of connexin 43 (Cx43) to the intercalated discs causing its lateralization to the plasma membrane where Cx43 forms hemichannels. We tested the hypothesis that in DMD cardiomyopathy, increased oxidative stress is associated with the formation and activation of Cx43 hemichannels.
View Article and Find Full Text PDFGlioblastoma is a highly aggressive brain tumor, characterized by the formation of dysfunctional blood vessels and a permeable endothelial barrier. S-nitrosylation, a post-translational modification, has been identified as a regulator of endothelial function. In this work we explored whether S-nitrosylation induced by glioblastoma tumors regulates the endothelial function.
View Article and Find Full Text PDFThe permeability of endothelial cells is regulated by the stability of the adherens junctions, which is highly sensitive to kinase-mediated phosphorylation and endothelial nitric oxide synthase (eNOS)-mediated S-nitrosylation of its protein components. Solid tumors can produce a variety of factors that stimulate these signaling pathways leading to endothelial cell hyperpermeability. This generates stromal conditions that facilitate tumoral growth and dissemination.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2018
Gestational diabetes mellitus (GDM) is a disease characterised by glucose intolerance and first diagnosed in pregnancy. This condition relates to an anomalous placental environment and aberrant placental vascular function. GDM-associated hyperglycaemia changes the placenta structure leading to abnormal development and functionality of this vital organ.
View Article and Find Full Text PDFFor proper cholesterol metabolism, normal expression and function of scavenger receptor class B type I (SR-BI), a high-density lipoprotein (HDL) receptor, is required. Among the factors that regulate overall cholesterol homeostasis and HDL metabolism, the nuclear farnesoid X receptor plays an important role. Guggulsterone, a bioactive compound present in the natural product gugulipid, is an antagonist of this receptor.
View Article and Find Full Text PDFWe tested the hypothesis that platelet-activating factor (PAF) induces -nitrosylation of vasodilator-stimulated phosphoprotein (VASP) as a mechanism to reduce microvascular endothelial barrier integrity and stimulate hyperpermeability. PAF elevated -nitrosylation of VASP above baseline levels in different endothelial cells and caused hyperpermeability. To ascertain the importance of endothelial nitric oxide synthase (eNOS) subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX).
View Article and Find Full Text PDFS-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2016
The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, β-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of β-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet-activating factor (PAF) as agonist.
View Article and Find Full Text PDFDiabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis.
View Article and Find Full Text PDFBackground/aims: Endothelial nitric oxide synthase (eNOS) is associated with caveolin-1 (Cav-1) in plasma membrane. We tested the hypothesis that eNOS activation by shear stress in resistance vessels depends on synchronized phosphorylation, dissociation from Cav-1 and translocation of the membrane-bound enzyme to Golgi and cytosol.
Methods: In isolated, perfused rat arterial mesenteric beds, we evaluated the effect of changes in flow rate (2-10 ml/min) on nitric oxide (NO) production, eNOS phosphorylation at serine 1177, eNOS subcellular distribution and co-immunoprecipitation with Cav-1, in the presence or absence of extracellular Ca(2+).
During repetitive stimulation of skeletal muscle, extracellular ATP levels raise, activating purinergic receptors, increasing Ca2+ influx, and enhancing contractile force, a response called potentiation. We found that ATP appears to be released through pannexin1 hemichannels (Panx1 HCs). Immunocytochemical analyses and function were consistent with pannexin1 localization to T-tubules intercalated with dihydropyridine and ryanodine receptors in slow (soleus) and fast (extensor digitorum longus, EDL) muscles.
View Article and Find Full Text PDFRationale: Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2008
To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e(-/-)). In the cheek pouch, topical tumor necrosis factor-alpha (TNF-alpha; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-alpha-glycyrrhetinic acid (AGA; 75 microM) or 18-beta-glycyrrhetinic acid (50 microM) abolished the TNF-alpha-induced increase in LAV and LPV; carbenoxolone (75 microM) or oleamide (100 microM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent.
View Article and Find Full Text PDFThe role of nitric oxide (NO) in cardiac contractility is complex and controversial. Several NO donors have been reported to cause positive or negative inotropism. NO can bind to guanylate cyclase, increasing cGMP production and activating PKG.
View Article and Find Full Text PDFThe loss of endothelial function is the initiating factor in the development of diabetic vascular disease. Kinins control endothelial function by the activation of two receptors: the B2 which is constitutively expressed, and the B1 which is highly induced in pathological conditions. In the present study, we observed that the levels of B1-receptor mRNA and protein are induced in endothelial cells incubated in high glucose.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2006
Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability.
View Article and Find Full Text PDFNitric oxide (NO) is an important regulator of blood flow, but its role in permeability is still challenged. We tested in vivo the hypotheses that: (a) endothelial nitric oxide synthase (eNOS) is not essential for regulation of baseline permeability; (b) eNOS is essential for hyperpermeability responses in inflammation; and (c) molecular inhibition of eNOS with caveolin-1 scaffolding domain (AP-Cav) reduces eNOS-regulated hyperpermeability. We used eNOS-deficient (eNOS-/-) mice and their wild-type control as experimental animals, platelet-activating factor (PAF) at 10(-7) m as the test pro-inflammatory agent, and integrated optical intensity (IOI) as an index of microvascular permeability.
View Article and Find Full Text PDF