Cancer cachexia is a complex metabolic disorder marked by unintentional body weight loss or 'wasting' of body mass, driven by multiple aetiological factors operating at various levels. It is associated with many malignancies and significantly contributes to cancer-related morbidity and mortality. With emerging recognition of cancer as a systemic disease, there is increasing awareness that understanding and treatment of cancer cachexia may represent a crucial cornerstone for improved management of cancer.
View Article and Find Full Text PDFAutomated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches.
View Article and Find Full Text PDFCachexia is a major cause of morbidity and mortality in individuals with cancer and is characterized by weight loss due to adipose and muscle tissue wasting. Hallmarks of white adipose tissue (WAT) remodeling, which often precedes weight loss, are impaired lipid storage, inflammation and eventually fibrosis. Tissue wasting occurs in response to tumor-secreted factors.
View Article and Find Full Text PDFAccumulation of excess nutrients hampers proper liver function and is linked to nonalcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the small ubiquitin-like modifier (SUMO) allows for a dynamic regulation of numerous processes including transcriptional reprogramming.
View Article and Find Full Text PDFCancer cachexia is a severe systemic wasting disease that negatively affects quality of life and survival in patients with cancer. To date, treating cancer cachexia is still a major unmet clinical need. We recently discovered the destabilization of the AMP-activated protein kinase (AMPK) complex in adipose tissue as a key event in cachexia-related adipose tissue dysfunction and developed an adeno-associated virus (AAV)-based approach to prevent AMPK degradation and prolong cachexia-free survival.
View Article and Find Full Text PDFObesity is an established risk factor for several human cancers. Given the association between excess body weight and cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated in cancer initiation, progression, and response to therapy.
View Article and Find Full Text PDFAberrant energy metabolism and cell cycle regulation both critically contribute to malignant cell growth and both processes represent targets for anticancer therapy. It is shown here that depletion of the AAA+-ATPase thyroid hormone receptor interacting protein 13 (Trip13) results in mitotic cell death through a combined mechanism linking lipid metabolism to aberrant mitosis. Diminished Trip13 levels in hepatocellular carcinoma cells result in insulin-receptor-/Akt-pathway-dependent accumulation of lipid droplets, which act as functional acentriolar microtubule organizing centers disturbing mitotic spindle polarity.
View Article and Find Full Text PDFBackground: Cancer is primarily a disease of high age in humans, yet most mouse studies on cancer cachexia are conducted using young adolescent mice. Given that metabolism and muscle function change with age, we hypothesized that aging may affect cachexia progression in mouse models.
Methods: We compare tumor and cachexia development in young and old mice of three different strains (C57BL/6J, C57BL/6N, BALB/c) and with two different tumor cell lines (Lewis Lung Cancer, Colon26).
Purpose: The genetic relatedness between primary and recurrent head and neck squamous cell carcinomas (HNSCC) reflects the extent of heterogeneity and therapy-driven selection of tumor subpopulations. Yet, current treatment of recurrent HNSCC ignores the molecular characteristics of therapy-resistant tumor populations.
Experimental Design: From 150 tumors, 74 primary HNSCCs were RNA sequenced and 38 matched primary/recurrent tumor pairs were both whole-exome and RNA sequenced.
Cachexia, a multifactorial wasting syndrome, is highly prevalent among advanced-stage cancer patients. Unlike weight loss in healthy humans, the progressive loss of body weight in cancer cachexia primarily implicates lean body mass, caused by an aberrant metabolism and systemic inflammation. This may lead to disease aggravation, poorer quality of life, and increased mortality.
View Article and Find Full Text PDFPurpose: To evaluate the suitability of psoas and erector spinae muscle proton density fat fraction (PDFF) and fat volume as biomarkers for monitoring cachexia severity in an oncological cohort, and to evaluate regional variances in muscle parameters over time.
Methods: In this prospective study, 58 oncological patients were examined by a 3 T MRI receiving between one and five scans. Muscle volume and PDFF were measured, segmentation masks were divided into proximal, middle and distal muscle section.
J Cachexia Sarcopenia Muscle
October 2021
Background: Cancer cachexia (CCx) is a multifactorial wasting disorder characterized by involuntary loss of body weight that affects many cancer patients and implies a poor prognosis, reducing both tolerance to and efficiency of anticancer therapies. Actual challenges in management of CCx remain in the identification of tumour-derived and host-derived mediators involved in systemic inflammation and tissue wasting and in the discovery of biomarkers that would allow for an earlier and personalized care of cancer patients. The aim of this study was to identify new markers of CCx across different species and tumour entities.
View Article and Find Full Text PDFLiver fibrosis is a strong predictor of long-term mortality in individuals with metabolic-associated fatty liver disease; yet, the mechanisms underlying the progression from the comparatively benign fatty liver state to advanced non-alcoholic steatohepatitis (NASH) and liver fibrosis are incompletely understood. Using cell-type-resolved genomics, we show that comprehensive alterations in hepatocyte genomic and transcriptional settings during NASH progression, led to a loss of hepatocyte identity. The hepatocyte reprogramming was under tight cooperative control of a network of fibrosis-activated transcription factors, as exemplified by the transcription factor Elf-3 (ELF3) and zinc finger protein GLIS2 (GLIS2).
View Article and Find Full Text PDFBy accentuating drug efficacy and impeding resistance mechanisms, combinatorial, multi-agent therapies have emerged as key approaches in the treatment of complex diseases, most notably cancer. Using high-throughput drug screens, we uncovered distinct metabolic vulnerabilities and thereby identified drug combinations synergistically causing a starvation-like lethal catabolic response in tumor cells from different cancer entities. Domperidone, a dopamine receptor antagonist, as well as several tricyclic antidepressants (TCAs), including imipramine, induced cancer cell death in combination with the mitochondrial uncoupler niclosamide ethanolamine (NEN) through activation of the integrated stress response pathway and the catabolic CLEAR network.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
December 2020
Background: Cancer cachexia (CCx) is a multifactorial energy-wasting syndrome reducing the efficiency of anti-cancer therapies, quality of life, and survival of cancer patients. In the past years, most studies focused on the identification of tumour and host-derived proteins contributing to CCx. However, there is still a lack of studies addressing the changes in bioactive lipids.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) represents a key feature of obesity-related type 2 diabetes with increasing prevalence worldwide. To our knowledge, no treatment options are available to date, paving the way for more severe liver damage, including cirrhosis and hepatocellular carcinoma. Here, we show an unexpected function for an intracellular trafficking regulator, the small Rab GTPase Rab24, in mitochondrial fission and activation, which has an immediate impact on hepatic and systemic energy homeostasis.
View Article and Find Full Text PDFObjective: Although it is well established that a-calcitonin gene-related peptide (CGRP) stabilizes muscle-type cholinergic receptors nicotinic subunits (AChR), the underlying mechanism by which this neuropeptide regulates muscle protein metabolism and neuromuscular junction (NMJ) morphology is unclear.
Methods: To elucidate the mechanisms how CGRP controls NMJ stability in denervated mice skeletal muscles, we carried out physiological, pharmacological, and molecular analyses of atrophic muscles induced by sciatic nerve transection.
Results: Here, we report that CGRP treatment in vivo abrogated the deleterious effects on NMJ upon denervation (DEN), an effect that was associated with suppression of skeletal muscle proteolysis, but not stimulation of protein synthesis.
Cancer cachexia is a multifactorial condition characterized by body weight loss that negatively affects quality of life and survival of patients with cancer. Despite the clinical relevance, there is currently no defined standard of care to effectively counteract cancer-associated progressive tissue wasting. Skeletal muscle atrophy represents the main manifestation of cancer cachexia.
View Article and Find Full Text PDFBreast tumor recurrence and metastasis represent the main causes of cancer-related death in women, and treatments are still lacking. Here, we define the lipogenic enzyme acetyl-CoA carboxylase (ACC) 1 as a key player in breast cancer metastasis. ACC1 phosphorylation was increased in invading cells both in murine and human breast cancer, serving as a point of convergence for leptin and transforming growth factor (TGF) β signaling.
View Article and Find Full Text PDFIncreased pro-inflammatory signaling is a hallmark of metabolic dysfunction in obesity and diabetes. Although both inflammatory and energy substrate handling processes represent critical layers of metabolic control, their molecular integration sites remain largely unknown. Here, we identify the heterodimerization interface between the α and β subunits of transcription factor GA-binding protein (GAbp) as a negative target of tumor necrosis factor alpha (TNF-α) signaling.
View Article and Find Full Text PDFRecent Results Cancer Res
June 2017
Multiple epidemiological studies demonstrated that overweight and obesity significantly increase the risk of several types of cancer. As the prevalence of obesity is dramatically rising, it is expected that it will represent one of the major lifestyle-associated risk factors for cancer development in the near future. Numerous recent studies expanded knowledge about key players and pathways, which are deregulated in the obese state and potentially promote cancer initiation, progression and aggressiveness via remote and local effects.
View Article and Find Full Text PDFObesity-related insulin resistance represents the core component of the metabolic syndrome, promoting glucose intolerance, pancreatic beta cell failure and type 2 diabetes. Efficient and safe insulin sensitization and glucose control remain critical therapeutic aims to prevent diabetic late complications Here, we identify transforming growth factor beta-like stimulated clone (TSC) 22 D4 as a molecular determinant of insulin signalling and glucose handling. Hepatic TSC22D4 inhibition both prevents and reverses hyperglycaemia, glucose intolerance and insulin resistance in diabetes mouse models.
View Article and Find Full Text PDFPurpose: To evaluate the volume and changes of human brown adipose tissue (BAT) in vivo following exposure to cold using magnetic resonance imaging (MRI).
Materials And Methods: The clavicular region of 10 healthy volunteers was examined with a 3T MRI system. One volunteer participated twice.