Publications by authors named "Mauricio Alves Da Motta Sobrinho"

This study aimed to analyze the influence of operational parameters (foaming agent concentration, agitation time, and drying temperature) on the characteristics of the final product and the foam drying process of Momordica charantia L. leaves, in addition to performing mathematical modeling of the experimental data. The foam characteristic was most influenced by the foaming agent concentration, where the increase in this variable increased its stability, reaching the highest index of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced oxidation processes (AOP) are highlighted as effective for removing organic contaminants, specifically targeting drug mixtures like atenolol and propranolol.
  • Two mixed catalysts were tested—pyrite with graphene oxide and pyrite with zinc oxide—using the photo-Fenton process with UV light, with the pyrite-zinc oxide combination showing the highest degradation rates at 88% and 84% for specific wavelengths.
  • Toxicity assessments revealed mixed results; while cabbage seeds had reduced germination rates post-treatment, watercress seeds showed no toxicity, underscoring the need to evaluate environmental impacts on different organisms.
View Article and Find Full Text PDF

The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@FeO) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite.

View Article and Find Full Text PDF

Proteins are of great importance for medicine and the pharmaceutical and food industries. However, proteins need to be purified prior to their application. This work investigated the application of a hydrogel bionanocomposite based on agar and graphene oxide (GO) for capturing cytochrome (Cyto ) heme protein by adsorption from aqueous solutions with other proteins.

View Article and Find Full Text PDF

In this study, sugarcane bagasse ash (SCBA), obtained as residue from the sugar mill, was used as an adsorbent for Acid Red 27 (AR27) removal from aqueous solutions. The ash characterization data showed 23.63% of organic compounds and silica (α-SiO) as the most expressive inorganic compound (confirmed by X-ray diffractogram), the BET surface area had a value of 62.

View Article and Find Full Text PDF

Nano-biocomposite hydrogel samples were produced using graphene oxide (GO) and agar and applied as adsorbents of organic components in water. The hydrogels were prepared by varying the wt% of Agar and GO. The samples were characterized, and batch adsorption experiments evaluated the effect of initial pH, equilibrium isotherms, and kinetics for the adsorption of the anionic dye Acid Orange 7 (AO) and the cationic dyes Nile Blue A (NB) and methylene blue (MB) in an aqueous medium.

View Article and Find Full Text PDF

The reuse of biomass waste has been gaining attention in adsorption processes to remove pollutants of emerging concern from water and wastewater. In this work, the potential of alginate-extracted macro-algae waste to uptake synthetic dyes and metal cations was evaluated in comparison with raw algae. In affinity assays, both materials were able to remove metal cations and cationic dyes up to maximum rates, and no significant removal was observed for an anionic dye in an acidic medium.

View Article and Find Full Text PDF

The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.

View Article and Find Full Text PDF

In this work, an agar-graphene oxide hydrogel was prepared to adsorb Cd (II) and Methyl Violet (MV) from water. The hydrogel was synthesised and characterised through SEM and EDS. Kinetic, equilibrium and regeneration studies were carried out, in which Langmuir, Freundlich and Sips isotherm models were fitted to the equilibrium experimental data; and regarding the kinetics, studies were conducted by modelling experimental data considering both empirical and phenomenological models.

View Article and Find Full Text PDF

In this work, Chloroquine diphosphate, and the cationic dye Safranin-O were selectively removed from water using the agar-graphene oxide (A-GO) hydrogel, produced via simple one-step jellification process. The morphology of the A-GO biocomposite was characterized and batch experiments were performed, with adsorption isotherms satisfactorily fitting (R > 0.98) Sips (Safranin-O) and Freundlich (Chloroquine) isotherms.

View Article and Find Full Text PDF

In this work, graphene oxide (GO) was synthesized by the modified Hummers method. The nanomaterial was characterized by FTIR and Raman spectroscopy, SEM, and pH at the point of zero charge. GO exhibited typical characteristics of graphene-based materials, indicating that graphite oxidation and exfoliation occurred successfully.

View Article and Find Full Text PDF

Marine shell wastes were thermally activated and characterized as aragonite and calcite phases and were used in the removal of synthetic anionic dyes, Bright Blue Acid (NB180) and Reactive Red 133 (RR133). Benefited marine shells were classified as low-cost (USD 0.33/g of adsorbent) in comparison with other reported materials.

View Article and Find Full Text PDF

Due to its recalcitrance and difficult disruption, biomass requires severe treatment conditions to produce bioproducts. These processes also generate substances that inhibit microbial metabolism, resulting in low conversion of sugars into bioproducts. To minimize this, in this work the sisal bagasse acid hydrolysate was detoxified using the activated carbon obtained from residues of the gasification of açaí endocarp.

View Article and Find Full Text PDF

Sodium percarbonate (SPC, 2NaCO∙3HO), is a compound that can be used under multiple environmental applications. In this work, SPC was employed as oxidant in the treatment of soil contaminated with diesel oil. The soil samples were collected during the earthmoving stage of RNEST Oil Refinery (Petrobras), Brazil.

View Article and Find Full Text PDF

Multilayer graphene oxide (mGO) was synthesized and functionalized via co-precipitation method to produce magnetic FeO-functionalized multilayer graphene oxide nanocomposite (MmGO). Photocatalytic properties of MmGO were investigated in the photodegradation of raw textile wastewater samples. Fourier-transformed infrared spectroscopy revealed Fe-O vibrations, characterized by the band shift from 636.

View Article and Find Full Text PDF

This work investigates the efficiency of LED and UV-C photo-reactors for paracetamol degradation using advanced oxidative processes. Among the evaluated processes, photo-Fenton was the most efficient for both radiations. Degradations greater than 81% (λ 197 nm) and 91% (λ 243 nm) were obtained in the kinetic study.

View Article and Find Full Text PDF

Functionalized graphene and its derivatives have been subject of many recent studies investigating their use as scavenger of various industrial pollutants. Adsorption is a feasible treatment, which can employ a wide variety of materials as adsorbents. Additionally, graphene has been distinguished for its remarkable properties, such as mechanical resistance, flexibility and electric conductivity.

View Article and Find Full Text PDF

Amino-functionalized multilayer graphene oxide (Am-nGO) has been synthesized and applied to remove the reactive drimaren red (DR) from aqueous solutions. Infrared spectroscopy evidenced amine and amide presence by peaks at 1579 cm and a band between 3300 and 3500 cm. Raman spectroscopy showed an increment in I/I ratio after amino-FeO-functionalization of nGO from 1.

View Article and Find Full Text PDF

The dyes used in textile industries are usually difficult to degrade in aquatic environments, being highly toxic to micro fauna and flora. Thus, textile wastewater treatments have been developed, among them, one that stands out is adsorption process. With the rise of nanomaterials applied to adsorption, graphene oxide (GO) shows promise in the removal of dyes.

View Article and Find Full Text PDF

This work shows a promising, environmentally friendly and greener alternative for the production and application of electrochemically produced Graphene Oxide (GO) for the adsorptive removal of Methylene Blue (MB) dye in an aqueous medium. During the adsorption tests, GO produced via electrochemical route reached the equilibrium in only 10 min of contact, exhibiting a percentage removal of MB over 97%. It could also be observed that the experimental data better fitted to the pseudo-second order kinetic model.

View Article and Find Full Text PDF

It was the aim of this work to evaluate the adsorptive performance of the biochar obtained from the gasification of wood residues onto a solution of Indosol Black NF1200 dye. The study was performed by means of factorial design 2, having as control variables: pH and adsorbent's granulometry. Batch tests were carried out at 200 rpm for 3 h (T = 28 °C).

View Article and Find Full Text PDF

Malacoculture waste (Anomalocardia brasiliana) shellfish shells (ABSS) were evaluated as adsorbents of Nylosan Brilliant Blue (NBB) acid dye. The ABSS were thermally activated at 1,000 °C for 10 h and then characterized by Fourier-transform infrared spectroscopy, analysis of specific surface area (BET), X-ray diffraction (XRD), and scanning electron microscopy. Point of zero charge (PZC) analysis of ABSS verified pH 13.

View Article and Find Full Text PDF

The residue generated in the aluminium cold lamination (TTR) was submitted to a direct burning and then it was calcined at 500°C. BET, FTIR, SEM with EDX and TGA techniques were performed to characterize the adsorbent before and after the adsorption. BET analysis showed that TTR specific surface area was 55.

View Article and Find Full Text PDF