This report contains a description of physiological and motion data, recorded simultaneously and in synchrony using the hyperscanning method from two professional dancers using wireless mobile brain-body imaging (MoBI) technology during rehearsals and public performances of "LiveWire" - a new composition comprised of five choreographed music and dance sections inspired by neuroscience principles. Brain and ocular activity were measured using 28-channel scalp electroencephalography (EEG), and 4-channel electrooculography (EOG), respectively; and head motion was recorded using an inertial measurement unit (IMU) placed on the forehead of each dancer. Video recordings were obtained for each session to allow for tagging of physiological and motion signals and for behavioral analysis.
View Article and Find Full Text PDFBackground: Dissecting the neurobiology of dance would shed light on a complex, yet ubiquitous, form of human communication. In this experiment, we sought to study, via mobile electroencephalography (EEG), the brain activity of five experienced dancers while dancing butoh, a postmodern dance that originated in Japan.
Results: We report the experimental design, methods, and practical execution of a highly interdisciplinary project that required the collaboration of dancers, engineers, neuroscientists, musicians, and multimedia artists, among others.
Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in educational settings over a 10-year span (2012-2022), highlighting the evolution of this field to address challenges in education by integrating technology to solve specific educational challenges, such as enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and providing real-time feedback for both students and educators. By exploring these aspects, this review sheds light on the potential implications of WBT on the future of learning.
View Article and Find Full Text PDFWithin the field of Humanities, there is a recognized need for educational innovation, as there are currently no reported tools available that enable individuals to interact with their environment to create an enhanced learning experience in the humanities (e.g., immersive spaces).
View Article and Find Full Text PDFThis study centers on creating a real-time algorithm to estimate brain-to-brain synchronization during social interactions, specifically in collaborative and competitive scenarios. This type of algorithm can provide useful information in the educational context, for instance, during teacher-student or student-student interactions. Positioned within the context of neuroeducation and hyperscanning, this research addresses the need for biomarkers as metrics for feedback, a missing element in current teaching methods.
View Article and Find Full Text PDFPhilos Ethics Humanit Med
November 2023
Background: Neuroscientific approaches have historically triggered changes in the conception of creativity and artistic experience, which can be revealed by noting the intersection of these fields of study in terms of variables such as global trends, methodologies, objects of study, or application of new technologies; however, these neuroscientific approaches are still often considered as disciplines detached from the arts and humanities. In this light, the question arises as to what evidence the history of neurotechnologies provides at the intersection of creativity and aesthetic experience.
Methods: We conducted a century-long bibliometric analysis of key parameters in multidisciplinary studies published in the Scopus database.
Understanding and predicting others' actions in ecological settings is an important research goal in social neuroscience. Here, we deployed a mobile brain-body imaging (MoBI) methodology to analyze inter-brain communication between professional musicians during a live jazz performance. Specifically, bispectral analysis was conducted to assess the synchronization of scalp electroencephalographic (EEG) signals from three expert musicians during a three-part 45 minute jazz performance, during which a new musician joined every five minutes.
View Article and Find Full Text PDFNon-pathological mental fatigue is a recurring, but undesirable condition among people in the fields of office work, industry, and education. This type of mental fatigue can often lead to negative outcomes, such as performance reduction and cognitive impairment in education; loss of focus and burnout syndrome in office work; and accidents leading to injuries or death in the transportation and manufacturing industries. Reliable mental fatigue assessment tools are promising in the improvement of performance, mental health and safety of students and workers, and at the same time, in the reduction of risks, accidents and the associated economic loss (e.
View Article and Find Full Text PDFThis study presents a neuroengineering-based machine learning tool developed to predict students' performance under different learning modalities. Neuroengineering tools are used to predict the learning performance obtained through two different modalities: text and video. Electroencephalographic signals were recorded in the two groups during learning tasks, and performance was evaluated with tests.
View Article and Find Full Text PDFIn this paper, we evaluate a semiautonomous brain-computer interface (BCI) for manipulation tasks. In such a system, the user controls a robotic arm through motor imagery commands. In traditional process-control BCI systems, the user has to provide those commands continuously in order to manipulate the effector of the robot step-by-step, which results in a tiresome process for simple tasks such as pick and replace an item from a surface.
View Article and Find Full Text PDFWe propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics.
View Article and Find Full Text PDF