Objective: This study assessed the impact of incorporating imputed SNP information from non-genotyped animals on genomic-polygenic evaluations in a Thai multibreed dairy population under various levels of imputation accuracy.
Methods: Data encompassed pedigree and phenotypic records for 305-day milk yield (MY), 305-day fat (Fat), and age at first calving (AFC) from 12,859 first-lactation cows, and genotypic records of various densities from 4,364 animals. A set of 64 animals genotyped with GeneSeek Genomic Profiler 80K and with four or more genotyped progenies was defined as target animals to simulate imputation scenarios for non-genotyped individuals.
This study evaluated the association between the proportion of Brahman genetics and productivity of Brahman-Angus cows at weaning using a 31-yr dataset containing 6,312 cows and 5,405 pregnancies. Cows were contemporaneously reared and enrolled in yearly breeding seasons under subtropical conditions of North-Central Florida. They were evenly distributed in six-breed groups (G) according to the proportion of Brahman genetics: G0% to 19%, G21% to 34%, G38% (Brangus), G41% to 59%, G63% to 78%, and G81% to 100%.
View Article and Find Full Text PDFObjective: The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions.
Methods: A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-yearseason, breed regression, heterosis regression and calving age regression effects.
Objective: This study compared five distinct sets of biological pathways and associated genes related to semen volume (VOL), number of sperm (NS), and sperm motility (MOT) in the Thai multibreed dairy population.
Methods: The phenotypic data included 13,533 VOL records, 12,773 NS records, and 12,660 MOT records from 131 bulls. The genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNPs) from 72 animals.
Objective: This study was to estimate heritabilities, additive genetic correlations, and phenotypic correlations between number of piglets born alive (NBA), litter birth weight (LTBW), number of piglets weaned (NPW) and litter weaning weight (LTWW) in different parities of Landrace (L), Yorkshire (Y), Landrace×Yorkshire (LY), and Yorkshire×Landrace (YL) sows in a commercial swine operation in Northern Thailand.
Methods: Two models were utilized, a single trait repeatability model (RM) and a multiple trait animal model (MTM). The RM assumed reproductive records from different parities to be repeated values of the same trait, whereas the MTM assumed these records to be different traits.
DNA methylation and the alternative splicing of precursor messenger RNAs (pre-mRNAs) are two important genetic modification mechanisms. However, both are currently uncharacterized in the muscle metabolism of rabbits. Thus, we constructed the Tianfu black rabbit obesity model (obese rabbits fed with a 10% high-fat diet and control rabbits from 35 days to 70 days) and collected the skeletal muscle samples from the two groups for Genome methylation sequencing and RNA sequencing.
View Article and Find Full Text PDFA high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography (LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes.
View Article and Find Full Text PDFFatty acids of intramuscular fat (IMF) in rabbits can influence meat quality, but it is unclear which fatty acids benefit to human health. A rabbit model of weight gain and weight loss was constructed using two rabbit groups and two growth stages. Stage 1 included control group1 fed a commercial diet(CG1) and experimental group1 fed a high fat diet (EG1).
View Article and Find Full Text PDFType 2 diabetes and metabolic syndrome caused by a high fat diet (HFD) have become public health problems worldwide. These diseases are characterized by the oxidation of skeletal muscle mitochondria and disruption of insulin resistance, but the mechanisms are not well understood. Therefore, this study aims to reveal how high-fat diet causes skeletal muscle metabolic disorders.
View Article and Find Full Text PDFThe prohibition of the use of growth-promoting drug additives in feeds was implemented in China in 2020. However, rabbits can experience symptoms of intestinal disease, such as diarrhea and flatulence, when switching from standard normal diets with antibiotics to antibiotic-free diets. The molecular mechanisms related to the occurrence of these diseases as well as associated physiological and metabolic changes in the intestine are unclear.
View Article and Find Full Text PDFmicroRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of endogenous single-stranded RNA molecules that play an important role in gene regulation in animals by pairing with target gene mRNA. Extensive evidence shows that miRNAs are key players in metabolic regulation and the development of obesity. However, the systemic understanding of miRNAs in the adipogenesis of obese rabbits need further investigation.
View Article and Find Full Text PDFCarcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection.
View Article and Find Full Text PDFThe gut microbiota is a complex ecological community that plays multiple critical roles within a host. Known intrinsic and extrinsic factors affect gut microbiota structure, but the influence of host genetics is understudied. To investigate the role of host genetics upon the gut microbiota structure, we performed a longitudinal study in which we evaluated the hindgut microbiota and its association with animal growth and immunity across life.
View Article and Find Full Text PDFRNA sequencing (RNA-seq) has allowed for transcriptional profiling of biological systems through the identification of differentially expressed (DE) genes and pathways. A total of 80 steers with extreme phenotypes were selected from the University of Florida multibreed Angus-Brahman herd. The average slaughter age was 12.
View Article and Find Full Text PDFSince 1940, efforts have been made to preserve the Blanco Orejinegro (BON) cattle breed by maintaining gene banks. Nine years ago, a BON genetic improvement program was implemented to increase genetic gain based on control of productivity and the use of performance tests, polygenic and genomic evaluations, and selection indices. The objective of this study was to estimate genetic parameters and trends for growth traits by using polygenic (PM) and genomic-polygenic (GPM) models.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
March 2021
This study aimed to determine whether high-fat diet (HFD) could cause growth, behavioural, biochemical and morphological changes in young female rabbits. Thirty-six female rabbits were randomly divided into two groups fed with either a high-fat diet (HFD) or a standard normal diet (SND) for 5 weeks. Growth and behavioural changes were recorded during the 5-week feeding period.
View Article and Find Full Text PDFFunctional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo.
View Article and Find Full Text PDFBackground: Transcription has a substantial genetic control and genetic dissection of gene expression could help us understand the genetic architecture of complex phenotypes such as meat quality in cattle. The objectives of the present research were: 1) to perform eQTL and sQTL mapping analyses for meat quality traits in longissimus dorsi muscle; 2) to uncover genes whose expression is influenced by local or distant genetic variation; 3) to identify expression and splicing hot spots; and 4) to uncover genomic regions affecting the expression of multiple genes.
Results: Eighty steers were selected for phenotyping, genotyping and RNA-seq evaluation.
The objective of this research was to characterize the genetic diversity and phylogenetic diversity among 12 cattle breeds (10 Chinese breeds and two foreign taurine breeds as controls) utilizing gene mtDNA 16S rRNA. The complete sequences of the mtDNA 16S rRNA genes of the 251 animals were 1570 bp long. The mean percentages of the four nitrogen bases were 37.
View Article and Find Full Text PDFMultiple synergistic factors affect the development and composition of mammalian gut microbiota, but effects of host genetics remain unclear. To illuminate the role of host genetics on gut microbiota, we employed animals with a graduated spectrum of genetic variation with minimal environmental influences. We bred 228 calves with linearly varying breed composition from 100% Angus (Bos taurus) to 100% Brahman (Bos indicus), as a proxy for genetic variation, and then raised the offspring in the same environment with identical diets.
View Article and Find Full Text PDFBeef from Bos taurus indicus is associated with toughness compared to Bos taurus taurus, suggesting there is antagonism between adaptability to heat and beef quality. Resistance to cellular stress in muscle may be protective postmortem, thereby delaying its conversion to meat. Therefore, our objective was to determine pH decline, calpain-1 and caspase 3 activation, and proteolysis in different biological cattle types.
View Article and Find Full Text PDFAntibiotics have been widely used in livestock to treat and prevent bacterial diseases. However, use of antibiotics has led to the emergence of antibiotic resistant microorganisms (ARMs) in food animals. Due to the decreased efficacy of antibiotics, alternatives to antibiotics that can reduce infectious diseases in food animals to enhance animal health and growth performance are urgently required.
View Article and Find Full Text PDFObjective: The objectives were to compare variance components, genetic parameters, prediction accuracies, and genomic-polygenic EBV rankings for milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population computed using five SNP sets from GeneSeek GGP80K chip.
Methods: The dataset contained monthly MY and FY of 8,361 first-lactation cows from 810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the GeneSeek GGP80K chip were obtained using a 2-trait single-step average-information REML procedure.