Background And Objective: Advanced glycation end-products (AGEs) have been implicated in the pathogenesis of diabetic complications through a variety of mechanisms including endothelial dysfunction and structural abnormalities in the vasculature and myocardium. Reducing the AGEs burden and their ensuing pro-inflammatory, pro-oxidative and pro-coagulant effect with associated dysfunctional proteins in various target tissues may retard the progression of and even reverse diabetic macro- and microvascular complications. Pyridinium, 3-[[2-(methylsulfonyl) hydrazino] carbonyl]-1-[2-oxo-2-2-thienyl) ethyl]-chloride (TRC4186) has demonstrated AGE-breaking activities in in vitro experiments and improvement in the endothelial and myocardial function in animal models of diabetes mellitus with reduction of AGEs accumulation in tissues over time.
View Article and Find Full Text PDF