NHS-IL12 is a novel immunocytokine designed for delivery of IL-12 to the tumor microenvironment (TME). NHS-IL12 consists of two molecules of IL-12 fused to a human IgG1 (NHS76) recognizing DNA/histone complexes, which are often exposed in the necrotic portions of tumors. Preclinical studies demonstrated the tumor-targeting ability and longer plasma half-life for NHS-IL12 when compared with recombinant IL-12 (rIL-12).
View Article and Find Full Text PDFThere are approximately 44,000 cases of human papillomavirus-associated (HPV-associated) cancer each year in the United States, most commonly caused by HPV types 16 and 18. Prophylactic vaccines successfully prevent healthy people from acquiring HPV infections via HPV-specific antibodies. In order to treat established HPV-associated malignancies, however, new therapies are necessary.
View Article and Find Full Text PDFInvestigation of the efficacy and mechanisms of human immuno-oncology agents has been hampered due to species-specific differences when utilizing preclinical mouse models. Peripheral blood mononuclear cell (PBMC) humanized mice provide a platform for investigating the modulation of the human immune-mediated antitumor response while circumventing the limitations of syngeneic model systems. Use of humanized mice has been stymied by model-specific limitations, some of which include the development of graft versus host disease, technical difficulty and cost associated with each humanized animal, and insufficient engraftment of some human immune subsets.
View Article and Find Full Text PDFThe lack of serial biopsies in patients with a range of carcinomas has been one obstacle in our understanding of the mechanism of action of immuno-oncology agents as well as the elucidation of mechanisms of resistance to these novel therapeutics. While much information can be obtained from studies conducted with syngeneic mouse models, these models have limitations, including that both tumor and immune cells being targeted are murine and that many of the immuno-oncology agents being evaluated are human proteins, and thus multiple administrations are hampered by host xenogeneic responses. Some of these limitations are being overcome by the use of humanized mouse models where human peripheral blood mononuclear cells (PBMC) are engrafted into immunosuppressed mouse strains.
View Article and Find Full Text PDFBackground: While significant strides in the treatment of metastatic bladder cancer have been made with immune checkpoint inhibitors, the treatment of carcinoma in situ and non-muscle invasive, non-metastatic (superficial) human urothelial carcinoma, also termed non-muscle invasive bladder cancer (NMIBC), remains intractable with bacillus Calmette-Guerin (BCG) employed as the standard of care. In this study, an immunocytokine, NHS-muIL12, which consists of two molecules of murine IL-12 fused to NHS76, a tumor necrosis-targeting human IgG1, was examined as an immunotherapeutic in an orthotopic MB49 bladder tumor model.
Methods: The antitumor activity of systemic administration of NHS-muIL12 was investigated on MB49 tumors, an aggressive, bioluminescent orthotopic bladder cancer model.
Here we describe a novel bifunctional fusion protein, designated N-809. This molecule comprises the IL-15/IL15Rα superagonist complex containing the Fc-domain of IgG1 (N-803, formerly designated as ALT-803) fused to two single chain anti-PD-L1 domains. The fully human IgG1 portion of the N-809 molecule was designed to potentially mediate antibody dependent cellular cytotoxicity (ADCC).
View Article and Find Full Text PDFImmunotherapy was significantly enhanced in a murine tumor model by combining a vaccine with a fusion protein designed to target the glucocorticoid-induced tumor necrosis factor (TNF) receptor related gene (GITR) on the surface of T cells. The recombinant poxvirus-based vaccine platform included Modified Vaccinia virus Ankara (rMVA) and fowlpox (rF) vectors as the driver immunogens both engineered to express the human carcinoembryonic antigen (CEA) and three murine costimulatory molecules B7.1, ICAM-1, LFA-3 (designated TRICOM).
View Article and Find Full Text PDFNatural killer (NK) cells are known to play a role in mediating innate immunity, in enhancing adaptive immune responses, and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) by reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, derived from a lymphoma patient, has previously been well characterized and adoptive transfer of irradiated NK-92 cells has demonstrated safety and shown preliminary evidence of clinical benefit in cancer patients. The NK-92 cell line, devoid of CD16, has now been engineered to express the high affinity (ha) CD16 V158 FcγRIIIa receptor, as well as engineered to express IL-2; IL-2 has been shown to replenish the granular stock of NK cells, leading to enhanced perforin- and granzyme-mediated lysis of tumor cells.
View Article and Find Full Text PDFThere continues to be a need for immunotherapies to treat type 1 diabetes in the clinic. We previously reported that nondepleting anti-CD4 and -CD8 Ab treatment effectively reverses diabetes in new-onset NOD mice. A key feature of the induction of remission is the egress of the majority of islet-resident T cells.
View Article and Find Full Text PDFThe use of nondepleting Abs specific for CD4 and CD8 is an effective strategy to tolerize CD4 and CD8 T cells in a tissue-specific manner. We reported that coreceptor therapy reverses diabetes in new onset NOD mice. A striking feature of coreceptor-induced remission is the purging of T cells from the pancreatic lymph nodes (PLN) and islets of NOD mice.
View Article and Find Full Text PDFThe mechanisms that regulate the efficacy of thymic selection remain ill-defined. The method presented here allows in vivo analyses of the development and selection of T cells specific for self and foreign antigens. The approach entails implantation of thymic grafts derived from various aged mice into immunodeficient scid recipients.
View Article and Find Full Text PDFArch Immunol Ther Exp (Warsz)
August 2015
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing β cells are selectively destroyed. β cell-specific T cells are considered to be the major mediators of pathology. Accordingly, most immunotherapies tested in the clinic to date have focused on reestablishing self-tolerance within the T cell compartment.
View Article and Find Full Text PDFInefficient thymic negative selection of self-specific T cells is associated with several autoimmune diseases, including type 1 diabetes. The factors that influence the efficacy of thymic negative selection, as well as the kinetics of thymic output of autoreactive T cells remain ill-defined. We investigated thymic production of β cell-specific T cells using a thymus-transplantation model.
View Article and Find Full Text PDFArch Immunol Ther Exp (Warsz)
December 2010
Events ongoing in the thymus are critical for deleting developing thymocytes specific for tissue antigens, and establishing self-tolerance within the T cell compartment. Aberrant thymic negative selection, however, is believed to generate a repertoire with increased self-reactivity, which in turn can contribute to the development of T cell-mediated autoimmunity. In this review, mechanisms that regulate the efficacy of negative selection and influence the deletion of autoreactive thymocytes will be discussed.
View Article and Find Full Text PDFWe report on two patients with myeloid disorders and complex karyotypes including a dicentric chromosome, dic(17;20)(p11.2;q11.2), resulting in the loss of most of 17p and 20q.
View Article and Find Full Text PDF