Single and multiple incorporations of stereochemically pure modified dinucleoside-phosphoramidates involving substituent groups ending with bis-hydroxyethyl and bis-aminoethyl groups have been performed into pyrimidic triple helix-forming oligo-2'-deoxyribonucleotides designed to bind parallel to the purine strand of the DNA target. The ability of these modified oligo-2'-deoxyribonucleotides to form triple helices has been studied by UV-melting curve analyses, and circular dichroism. Only the oligonucleotides involving modified phosphate groups with the Rp configuration formed more stable triple helices than did the parent phosphodiester sequences.
View Article and Find Full Text PDFUsing circular dichroism spectroscopy the ability of berenil, a minor groove binding drug, to induce triple helix formation was investigated with two oligonucleotides designed to form two intramolecular triplexes containing T*A:T and G*G:C triplets, which differ only by the orientation of their third strand: 5'-d(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), and 5'-d(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4), where [T4] represents a stretch of four thymine residues. We demonstrate that when added to the duplex form of these oligonucleotides, berenil induces triplex structure formation only if the orientation of third strand is anti-parallel to the purine strand.
View Article and Find Full Text PDF