Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this -arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC = 8.
View Article and Find Full Text PDFDuration of receptor antagonism, measured as the recovery of agonist responsiveness, is gaining attention as a method to evaluate the 'effective' target-residence for antagonists. These functional assays might be a good alternative for kinetic binding assays in competition with radiolabeled or fluorescent ligands, as they are performed on intact cells and better reflect consequences of dynamic cellular processes on duration of receptor antagonism. Here, we used a bioluminescence resonance energy transfer (BRET)-based assay that monitors heterotrimeric G protein activation via scavenging of released Venus-Gβγ by NanoLuc (Nluc)-tagged membrane-associated-C-terminal fragment of G protein-coupled receptor kinase 3 (masGRK3ct-Nluc) as a tool to probe duration of G protein-coupled receptor (GPCR) antagonism.
View Article and Find Full Text PDF