Publications by authors named "Maurice A Smith"

The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that for declarative memories, medial temporal lobe (MTL) structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that for sensorimotor memories, the cerebellum may play an analogous role.

View Article and Find Full Text PDF

Sensorimotor learning can change the tuning of neurons in motor-related brain areas and rotate their preferred directions (PDs). These PD rotations are commonly interpreted as reflecting motor command changes; however, cortical neurons that display PD rotations also contribute to sensorimotor learning. Sensorimotor learning should, therefore, alter not only motor commands but also the tuning of neurons responsible for this learning, and thus impact subsequent learning ability.

View Article and Find Full Text PDF

Unlabelled: The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role.

View Article and Find Full Text PDF

Short sub-100ms visual feedback latencies are common in many types of human-computer interactions yet are known to markedly reduce performance in a wide variety of motor tasks from simple pointing to operating surgical robotics. These latencies are also present in the computer-based experiments used to study the sensorimotor learning that underlies the acquisition of motor performance. Inspired by neurophysiological findings showing that cerebellar LTD and cortical LTP would both be disrupted by sub-100ms latencies, we hypothesized that implicit sensorimotor learning may be particularly sensitive to these short latencies.

View Article and Find Full Text PDF

Memories are easier to relearn than learn from scratch. This advantage, known as savings, has been widely assumed to result from the reemergence of stable long-term memories. In fact, the presence of savings has often been used as a marker for whether a memory has been consolidated.

View Article and Find Full Text PDF

Actions often require the selection of a specific goal amongst a range of possibilities, like when a softball player must precisely position her glove to field a fast-approaching ground ball. Previous studies have suggested that during goal uncertainty the brain prepares for all potential goals in parallel and averages the corresponding motor plans to command an intermediate movement that is progressively refined as additional information becomes available. Although intermediate movements are widely observed, they could instead reflect a neural decision about the single best action choice given the uncertainty present.

View Article and Find Full Text PDF

Sports are replete with strategies, yet coaching lore often emphasizes 'quieting the mind', 'trusting the body' and 'avoiding overthinking' in referring to the importance of relying less on high-level explicit strategies in favor of low-level implicit motor learning. We investigated the interactions between explicit strategy and implicit motor adaptation by designing a sensorimotor learning paradigm that drives adaptive changes in some dimensions but not others. We find that strategy and implicit adaptation synergize in driven dimensions, but effectively cancel each other in undriven dimensions.

View Article and Find Full Text PDF

Trial-to-trial movement variability can both drive motor learning and interfere with expert performance, suggesting benefits of regulating it in context-specific ways. Here we address whether and how the brain regulates motor variability as a function of performance by training rats to execute ballistic forelimb movements for reward. Behavioral datasets comprising millions of trials revealed that motor variability is regulated by two distinct processes.

View Article and Find Full Text PDF

Extensive computational and neurobiological work has focused on how the training schedule, i.e., the duration and rate at which an environmental disturbance is presented, shapes the formation of motor memories.

View Article and Find Full Text PDF

Repeated exposure to a novel physical environment eventually leads to a mature adaptive response whereby feedforward changes in motor output mirror both the amplitude and temporal structure of the environmental perturbations. However, adaptive responses at the earliest stages of learning have been found to be not only smaller, but systematically less specific in their temporal structure compared to later stages of learning. This observation has spawned a lively debate as to whether the temporal structure of the initial adaptive response is, in fact, stereotyped and non-specific.

View Article and Find Full Text PDF

Trial-to-trial variability in the execution of movements and motor skills is ubiquitous and widely considered to be the unwanted consequence of a noisy nervous system. However, recent studies have suggested that motor variability may also be a feature of how sensorimotor systems operate and learn. This view, rooted in reinforcement learning theory, equates motor variability with purposeful exploration of motor space that, when coupled with reinforcement, can drive motor learning.

View Article and Find Full Text PDF

When the error signals that guide human motor learning are withheld following training, recently-learned motor memories systematically regress toward untrained performance. It has previously been hypothesized that this regression results from an intrinsic volatility in these memories, resulting in an inevitable decay in the absence of ongoing error signals. However, a recently-proposed alternative posits that even recently-acquired motor memories are intrinsically stable, decaying only if a change in context is detected.

View Article and Find Full Text PDF

To reduce the risk of slip, grip force (GF) control includes a safety margin above the force level ordinarily sufficient for the expected load force (LF) dynamics. The current view is that this safety margin is based on the expected LF dynamics, amounting to a static safety factor like that often used in engineering design. More efficient control could be achieved, however, if the motor system reduces the safety margin when LF variability is low and increases it when this variability is high.

View Article and Find Full Text PDF

A 77-year-old woman presented to the emergency department with a 1-week history of anorexia, fatigue, general malaise and a 3-day history of fever. Clinical examination revealed livedo reticularis across the anterior aspect of her knees and a pansystolic murmur. Laboratory evaluation found neutrophil leucocytosis; elevated C reactive protein and blood cultures grew Streptococcus acidominimus.

View Article and Find Full Text PDF

Background: The motor system has the remarkable ability not only to learn but also to learn how fast it should learn. However, the mechanisms behind this ability are not well understood. Previous studies have posited that the rate of adaptation in a given environment is determined by Bayesian sensorimotor integration based on the amount of variability in the state of the environment.

View Article and Find Full Text PDF

Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments.

View Article and Find Full Text PDF

The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation.

View Article and Find Full Text PDF

The way that a motor adaptation is trained, for example, the manner in which it is introduced or the duration of the training period, can influence its internal representation. However, recent studies examining the gradual versus abrupt introduction of a novel environment have produced conflicting results. Here we examined how these effects determine the effector specificity of motor adaptation during visually guided reaching.

View Article and Find Full Text PDF

Background And Aim Of The Study: Half of all patients with infective endocarditis (IE) will require early surgical intervention, and another 40% will eventually undergo surgical treatment for their disease. Although the surgical management of IE is effective, the financial impact of the disease has never been assessed.

Methods: All patients who underwent valve surgery for native valve IE at the present authors' institution over a 10-year period (1996-2006) were reviewed retrospectively.

View Article and Find Full Text PDF

A key idea in motor learning is that internal models of environmental dynamics are internally represented as functions of spatial variables including position, velocity, and acceleration of body motion. We refer to such a representation as motion dependent. The evidence for a motion-dependent representation is, however, primarily based on examination of the adaptation to motion-dependent dynamic environments.

View Article and Find Full Text PDF

Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action.

View Article and Find Full Text PDF

Successful manipulation of an object requires exerting grip forces (GF) sufficient to prevent slippage. To prevent slip in more uncertain environments, GF would need to increase. Here we investigate the brain's ability to efficiently control grasp by producing GFs that correspond to confidence estimates of uncertain environments that are characterized by probability density functions of different variances and higher order moments.

View Article and Find Full Text PDF

The shape of the directional generalization function for adaptation to a viscous force-field environment has been controversial. Some studies have suggested wide, essentially global generalization and others have suggested narrow, local generalization. Here, we show definitively that motor adaptation displays narrow generalization with a minimal global component and a peak at the trained movement direction for both single-trial and asymptotic adaptation.

View Article and Find Full Text PDF

In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case.

View Article and Find Full Text PDF

Saccadic eye movements are often grouped in pre-programmed sequences. The mechanism underlying the generation of each saccade in a sequence is currently poorly understood. Broadly speaking, two alternative schemes are possible: first, after each saccade the retinotopic location of the next target could be estimated, and an appropriate saccade could be generated.

View Article and Find Full Text PDF