Unlabelled: Although genomes encode instructions for mammalian cell differentiation with rich syntactic relationships, existing methods for genetically programming cells have modest capabilities for stepwise regulation of genes. Here, we developed a sequential genetic system that enables transcriptional activation of endogenous genes in a preprogrammed, stepwise manner. The system relies on the removal of an RNA polymerase III termination signal to induce both the transcriptional activation and the DNA endonuclease activities of a Cas9-VPR protein to effect stepwise progression through cascades of gene activation events.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is an aggressive disease lacking effective treatment. Animal models of HCC are necessary for preclinical evaluation of the safety and efficacy of novel therapeutics. Large animal models of HCC allow testing image-guided locoregional therapies, which are widely used in the management of HCC.
View Article and Find Full Text PDFVascular endothelial growth factor receptor type 2 (VEGFR2, also known as KDR and FLK1) signalling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species and copper (Cu) are also involved in these processes. However, their inter-relationship is poorly understood.
View Article and Find Full Text PDFPigs provide a valuable large animal model for several diseases due to their similarity with humans in anatomy, physiology, genetics and drug metabolism. We recently generated a porcine model for and driven hepatocellular carcinoma (HCC) by autologous liver implantation. Here we describe a streamlined approach for developing genetically tailored porcine HCC cells by CRISPR/Cas9 gene editing and isolation of homogenous genetically validated cell clones.
View Article and Find Full Text PDFMany colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity.
View Article and Find Full Text PDFEngineered transcription activator-like effector nucleases (TALENs) are broadly useful tools for performing targeted genome editing in a wide variety of organisms and cell types including plants, zebrafish, C. elegans, rat, human somatic cells, and human pluripotent stem cells. Here we describe detailed protocols for the serial, hierarchical assembly of TALENs that require neither PCR nor specialized multi-fragment ligations and that can be implemented by any laboratory.
View Article and Find Full Text PDFBackground: Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN) is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs) designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable.
View Article and Find Full Text PDFThe efficiency of growth of nanocrystalline tin oxide-germania nanocomposites at room temperature was investigated in the presence of the amino acids arginine, histidine, and lysine under varying conditions. The preparation of tin oxide nanoparticles under similar conditions was also examined. It was observed that of the three amino acids, arginine was the most efficient and formed higher yields of the products.
View Article and Find Full Text PDF