Publications by authors named "Maureen O'Connor-Mccourt"

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation.

View Article and Find Full Text PDF

Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-β plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-β1 than TGF-β2 and TGF-β3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-β1/TGF-β3 protein trap, to block the excessive TGF-β signaling.

View Article and Find Full Text PDF

An increasingly appreciated conundrum in the discovery of antibody drug conjugates (ADCs) is that an antibody that was selected primarily for strong binding to its cancer target may not serve as an optimal ADC. In this study, we performed mechanistic cell-based experiments to determine the correlation between antibody affinity, avidity, internalization and ADC efficacy. We used structure-guided design to assemble a panel of antibody mutants with predicted Her2 affinities ranging from higher to lower relative to the parent antibody, Herceptin.

View Article and Find Full Text PDF

Effective biologic therapeutics require binding affinities that are fine-tuned to their disease-related molecular target. The ADAPT (Assisted Design of Antibody and Protein Therapeutics) platform aids in the selection of mutants that improve/modulate the affinity of antibodies and other biologics. It uses a consensus z-score from three scoring functions and interleaves computational predictions with experimental validation, significantly enhancing the robustness of the design and selection of mutants.

View Article and Find Full Text PDF

Transforming growth factor (TGF) β1, β2, and β3 (TGF-β1-TGF-β3, respectively) are small secreted signaling proteins that each signal through the TGF-β type I and type II receptors (TβRI and TβRII, respectively). However, TGF-β2, which is well-known to bind TβRII several hundred-fold more weakly than TGF-β1 and TGF-β3, has an additional requirement for betaglycan, a membrane-anchored nonsignaling receptor. Betaglycan has two domains that bind TGF-β2 at independent sites, but how it binds TGF-β2 to potentiate TβRII binding and how the complex with TGF-β, TβRII, and betaglycan undergoes the transition to the signaling complex with TGF-β, TβRII, and TβRI are not understood.

View Article and Find Full Text PDF

The effects of transforming growth factor beta (TGF-β) signaling on prostate tumorigenesis has been shown to be strongly dependent on the stage of development, with TGF-β functioning as a tumor suppressor in early stages of disease and as a promoter in later stages. To study in further detail the paradoxical tumor-suppressive and tumor-promoting roles of the TGF-β pathway, we investigated the effect of systemic treatment with a TGF-β inhibitor on early stages of prostate tumorigenesis. To ensure effective inhibition, we developed and employed a novel trivalent TGF-β receptor trap, RER, comprised of domains derived from the TGF-β type II and type III receptors.

View Article and Find Full Text PDF

The selection of therapeutic targets is a critical aspect of antibody-drug conjugate research and development. In this study, we applied computational methods to select candidate targets overexpressed in three major breast cancer subtypes as compared with a range of vital organs and tissues. Microarray data corresponding to over 8,000 tissue samples were collected from the public domain.

View Article and Find Full Text PDF

Importance: Decisions regarding adjuvant therapy in patients with stage II colorectal cancer (CRC) have been among the most challenging and controversial in oncology over the past 20 years.

Objective: To develop robust combinatory cancer hallmark-based gene signature sets (CSS sets) that more accurately predict prognosis and identify a subset of patients with stage II CRC who could gain survival benefits from adjuvant chemotherapy.

Design, Setting, And Participants: Thirteen retrospective studies of patients with stage II CRC who had clinical follow-up and adjuvant chemotherapy were analyzed.

View Article and Find Full Text PDF

Triple-negative (TN) breast cancer accounts for ∼ 15% of breast cancers and is characterized by a high likelihood of relapse and a lack of targeted therapies. In contrast, luminal-type tumors that express the estrogen and progesterone receptors (ER+/PR+) and lack expression of human epidermal growth factor receptor 2 (Her2-) are treated with targeted hormonal therapy and carry a better prognosis. To identify potential targets for the development of future therapeutics aimed specifically at TN breast cancers, we have used a hydrazide-based glycoproteomic workflow to compare protein expression in clinical tumors from nine TN (Her2-/ER-/PR-) and nine luminal (Her2-/ER+/PR+) patients.

View Article and Find Full Text PDF

Tumor genome sequencing leads to documenting thousands of DNA mutations and other genomic alterations. At present, these data cannot be analyzed adequately to aid in the understanding of tumorigenesis and its evolution. Moreover, we have little insight into how to use these data to predict clinical phenotypes and tumor progression to better design patient treatment.

View Article and Find Full Text PDF

An alternative or follow-up adjunct to conventional maximum tolerated dose (MTD) chemotherapy now in advanced phase III clinical trial assessment is metronomic chemotherapy--the close regular administration of low doses of drug with no prolonged breaks. A number of preclinical studies have shown metronomic chemotherapy can cause long term survival of mice with advanced cancer, including metastatic disease, in the absence of overt toxicity, especially when combined with targeted antiangiogenic drugs. However, similar to MTD chemotherapy acquired resistance eventually develops, the basis of which is unknown.

View Article and Find Full Text PDF

Individual cancer cells carry a bewildering number of distinct genomic alterations (e.g., copy number variations and mutations), making it a challenge to uncover genomic-driven mechanisms governing tumorigenesis.

View Article and Find Full Text PDF

Insulin-like growth factor-binding protein 4 (IGFBP-4/IBP-4) has potent IGF-independent anti-angiogenic and antitumorigenic effects. In this study, we demonstrated that these activities are located in the IGFBP-4 C-terminal protein fragment (CIBP-4), a region containing a thyroglobulin type 1 (Tg1) domain. Proteins bearing Tg1 domains have been shown to inhibit cathepsins, lysosomal enzymes involved in basement membrane degradation and implicated in tumor invasion and angiogenesis.

View Article and Find Full Text PDF

Proteins secreted or shed by cancerous cells are seen as a rich source of biomarkers and novel therapeutic targets. Recently, the importance of the tumor microenvironment, which comprises the surrounding non-tumor cells, has received increased attention for its role in tumor progression. We developed a targeted proteomics assay to monitor a panel of plasma proteins postulated to be present in the tumor microenvironment.

View Article and Find Full Text PDF

Metastatic spread of melanoma to the central nervous system (CNS) is a common and devastating manifestation of disease progression, which, despite its clinical importance, remains poorly understood with respect to underlying molecular mechanisms. Using a recently developed preclinical model of spontaneous melanoma CNS metastasis, we have identified alterations in expression of endothelin receptor B (EDNRB) as a potential factor that influences brain metastatic potential. Induced overexpression of this gene mediated enhanced overall metastatic disease, and resulted in an increased incidence of spontaneous CNS metastases.

View Article and Find Full Text PDF

Deregulation of TGF-β superfamily signaling is a causative factor in many diseases. Here we describe a protein engineering strategy for the generation of single-chain bivalent receptor traps for TGF-β superfamily ligands. Traps were assembled using the intrinsically disordered regions flanking the structured binding domain of each receptor as "native linkers" between two binding domains.

View Article and Find Full Text PDF

Several reports have shown that secreted clusterin (sCLU) plays multiple roles in tumor development and metastasis. Here, we report on a 12-mer sCLU binding peptide (designated P3378) that was identified by screening a phage-display peptide library against purified human sCLU. Differential resonance perturbation nuclear magnetic resonance using P3378 and a scrambled control peptide (designated P3378R) confirmed the P3378-sCLU interaction and demonstrated that it was sequence specific.

View Article and Find Full Text PDF

TGF-β isoforms (TGF-β1, -β2, and -β3) are secreted signaling ligands that stimulate the expression of protein components of the extracellular matrix, regulate the growth and differentiation of epithelial cells, modulate immune cell function, and play roles in the development of several essential organs, including the heart and lungs. The importance of the TGF-βs is underscored by their conservation among vertebrates and by their demonstrated roles in a variety of human diseases, including tissue fibrosis and cancer. The objective of this review is to highlight recent progress in characterizing the structures of the three TGF-β isoforms in complex with their receptors, and to compare these with one another as well as with other members of the superfamily.

View Article and Find Full Text PDF

Mcl-1, a pro-survival member of the Bcl-2 family located at the mitochondrial outer membrane, is subject to constitutive ubiquitylation by the Bcl-2 homology 3-only E3 ligase, Mule/Lasu1, resulting in rapid steady-state degradation via the proteasome. Insertion of newly synthesized Mcl-1 into the mitochondrial outer membrane is dependent on its C-terminal transmembrane segment, but once inserted, the N terminus of a portion of the Mcl-1 molecules can be subject to proteolytic processing. Remarkably, this processing requires an intact electrochemical potential across the inner membrane.

View Article and Find Full Text PDF

Blood vessels in tumors frequently show abnormal characteristics, such as tortuous morphology or leakiness, but very little is known about protein expression in tumor vessels. In this study, we have used laser capture microdissection (LCM) to isolate microvessels from clinical samples of invasive ductal carcinoma (IDC), the most common form of malignant breast cancer, and from patient-matched adjacent nonmalignant tissue. This approach eliminates many of the problems associated with the heterogeneity of clinical tumor tissues by controlling for differences in protein expression between both individual patients and different cell types.

View Article and Find Full Text PDF

Cancer patients are often overtreated because of a failure to identify low-risk cancer patients. Thus far, no algorithm has been able to successfully generate cancer prognostic gene signatures with high accuracy and robustness in order to identify these patients. In this paper, we developed an algorithm that identifies prognostic markers using tumour gene microarrays focusing on metastasis-driving gene expression signals.

View Article and Find Full Text PDF

CbpA, one of the Escherichia coli DnaJ homologues, acts as a co-chaperone in the DnaK chaperone system. Despite its extensive similarity in domain structure and function to DnaJ, CbpA has a unique and specific regulatory mechanism mediated through the small protein CbpM. Both CbpA and CbpM are highly conserved in bacteria.

View Article and Find Full Text PDF

An unsupervised multi-strategy approach has been developed to identify informative genes from high throughput genomic data. Several statistical methods have been used in the field to identify differentially expressed genes. Since different methods generate different lists of genes, it is very challenging to determine the most reliable gene list and the appropriate method.

View Article and Find Full Text PDF