Publications by authors named "Maureen O' Malley"

The concepts currently operating in much medical microbiome research bear a curious resemblance to an ancient tradition of Western medicine. This tradition, humoral medicine, is concerned with the four humors: yellow and black bile, phlegm, blood. Both humoral medicine and medical microbiome research use notions of imbalance and balance for broad explanations of disease and health.

View Article and Find Full Text PDF

Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving.

View Article and Find Full Text PDF

Background: Patient-reported outcome measures (PROMs) are needed to measure outcomes that matter to people with nail conditions, from their perspective.

Objective: To design a comprehensive new PROM (NAIL-Q) to measure outcomes important in toenail and fingernail conditions.

Methods: A mixed methods iterative approach was used.

View Article and Find Full Text PDF

Despite their centrality to medicine, drugs are not easily defined. We introduce two desiderata for a basic definition of medical drugs. It should: (a) capture everything considered to be a drug in medical contexts and (b) rule out anything that is not considered to be a drug.

View Article and Find Full Text PDF

The 'principle of microbial infallibility' was a mainstay of microbial physiology and environmental microbiology in earlier decades. This principle asserts that wherever there is an energetic gain to be made from environmental resources, microorganisms will find a way to take advantage of the situation. Although previously disputed, this claim was revived with the discovery of anammox bacteria and other major contributors to biogeochemistry.

View Article and Find Full Text PDF

Most discussions of human microbiome research have focused on bacterial investigations and findings. Our target is to understand how human eukaryotic microbiome research is developing, its potential distinctiveness, and how problems can be addressed. We start with an overview of the entire eukaryotic microbiome literature (578 papers), show tendencies in the human-based microbiome literature, and then compare the eukaryotic field to more developed human bacterial microbiome research.

View Article and Find Full Text PDF

Identifying and theorizing major turning points in the history of life generates insights into not only world-changing evolutionary events but also the processes that bring these events about. In his treatment of these issues, Bonner identifies the evolution of sex, multicellularity, and nervous systems as enabling the "evolution of evolution," which involves fundamental transformations in how evolution occurs. By contextualizing his framework within two decades of theorizing about major transitions in evolution, we identify some basic problems that Bonner's theory shares with much of the prevailing literature.

View Article and Find Full Text PDF

Today, a number of treatment options are now available for metastatic melanoma. Within the last decade, the development of novel immunotherapies for cancer has significantly altered the course of the disease in patients with melanoma. With more patients receiving these potentially life-saving treatments, not only have we learned more about the interplay between the immune system and melanoma, but more importantly, which treatment options are most appropriate given the clinical picture.

View Article and Find Full Text PDF

Insight into the last eukaryotic common ancestor (LECA) is central to any phylogeny-based reconstruction of early eukaryotic evolution. Increasing amounts of data enable such reconstructions, without necessarily providing further insight into what LECA actually was. We consider four possible concepts of LECA: an abstract phylogenetic state, a single cell, a population, and a consortium of organisms.

View Article and Find Full Text PDF

Microbial model systems have a long history of fruitful use in fields that include evolution and ecology. In order to develop further insight into modelling practice, we examine how the competitive exclusion and coexistence of competing species have been modelled mathematically and materially over the course of a long research history. In particular, we investigate how microbial models of these dynamics interact with mathematical or computational models of the same phenomena.

View Article and Find Full Text PDF

Microbiota-gut-brain (MGB) research is a fast-growing field of inquiry with important implications for how human brain function and behaviour are understood. Researchers manipulate gut microbes ("microbiota") to reveal connections between intestinal microbiota and normal brain functions (e.g.

View Article and Find Full Text PDF

Dysbiosis is a key term in human microbiome research, especially when microbiome patterns are associated with disease states. Although some questions have been raised about how this term is applied, its use continues undiminished in the literature. We investigate the ways in which microbiome researchers discuss dysbiosis and then assess the impact of different concepts of dysbiosis on microbiome research.

View Article and Find Full Text PDF

Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s.

View Article and Find Full Text PDF

In her influential 1967 paper, Lynn Margulis synthesized a range of data to support the idea of endosymbiosis. Building on the success of this work, she applied the same methodology to promote the role of symbiosis more generally in evolution. As part of this broader project, she coined the term 'holobiont' to refer to a unified entity of symbiont and host.

View Article and Find Full Text PDF

Social reward plays a fundamental role in shaping human and animal behavior. The rewarding nature of many forms of social behavior including sexual behavior, parental behavior, and social play has been revealed using well-established procedures such as the conditioned place preference test. Many motivated social behaviors are regulated by the nonapeptides oxytocin (OT) and arginine vasopressin (AVP) through their actions in multiple brain structures.

View Article and Find Full Text PDF

There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology.

View Article and Find Full Text PDF

Macroevolutionary patterns can be produced by combinations of diverse and even oppositional dynamics. A growing body of data indicates that secondary simplifications of molecular and cellular structures are common. Some major diversifications in eukaryotes have occurred because of loss and minimalisation; numerous episodes in prokaryote evolution have likewise been driven by the reduction of structure.

View Article and Find Full Text PDF

Social recognition is a fundamental requirement for all forms of social relationships. A majority of studies investigating the neural mechanisms underlying social recognition in rodents have investigated relatively neutral social stimuli such as juveniles or ovariectomized females over short time intervals (e.g.

View Article and Find Full Text PDF
The ecological virus.

Stud Hist Philos Biol Biomed Sci

October 2016

Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort.

View Article and Find Full Text PDF

Molecular data and methods have become centrally important to evolutionary analysis, largely because they have enabled global phylogenetic reconstructions of the relationships between organisms in the tree of life. Often, however, molecular stories conflict dramatically with morphology-based histories of lineages. The evolutionary origin of animal groups provides one such case.

View Article and Find Full Text PDF

Microbial model systems have made major contributions across the life sciences. Their influence extends beyond strictly microbiological research to inform and enhance general biological understanding. To cast light on how microbial populations and communities function as model systems, we examine their use in historical and contemporary research on evolutionary and ecological dynamics.

View Article and Find Full Text PDF

Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis.

View Article and Find Full Text PDF

Historically, conceptualizations of symbiosis and endosymbiosis have been pitted against Darwinian or neo-Darwinian evolutionary theory. In more recent times, Lynn Margulis has argued vigorously along these lines. However, there are only shallow grounds for finding Darwinian concepts or population genetic theory incompatible with endosymbiosis.

View Article and Find Full Text PDF