Transl Vis Sci Technol
October 2024
Diffusion optics Technology (DOT) myopia control spectacle lenses are based on contrast theory. This innovative theory represents a radical departure from the classical concept of visual deprivation myopia. However, traditional theories have evolved, arriving at remarkably similar solutions for myopia control as the DOT lenses.
View Article and Find Full Text PDFAims: To evaluate the myopia control efficacy of Diffusion Optics Technology (DOT) spectacle lenses in children over a 4-year treatment period.
Methods: CYPRESS Part 1 (NCT03623074) was a 3-year multicentre, randomised, controlled, double-masked trial comparing two investigational spectacle lens DOT designs (Test 1, Test 2) and standard single vision Control lenses in 256 North American children aged 6-10 years. Children completing Part 1 (n=200) were invited to enrol in CYPRESS Part 2 (NCT04947735) for an additional 1-year period.
We are writing to address errors of misrepresentation in the article "ON and OFF receptive field processing in the presence of optical scattering" [Biomed. Opt. Express14, 2618 (2023)10.
View Article and Find Full Text PDFTrichromacy is unique to primates among placental mammals, enabled by blue (short/S), green (medium/M), and red (long/L) cones. In humans, great apes, and Old World monkeys, cones make a poorly understood choice between M and L cone subtype fates. To determine mechanisms specifying M and L cones, we developed an approach to visualize expression of the highly similar M- and L-opsin mRNAs.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
March 2023
The irreducible unique hues-red, green, blue, and yellow-remain one of the great mysteries of vision science. Attempts to create a physiologically parsimonious model that can predict the spectral locations of the unique hues all rely on at least one post hoc adjustment to produce appropriate loci for unique green and unique red, and struggle to explain the non-linearity of the Blue/Yellow system. We propose a neurobiological color vision model that overcomes these challenges by using physiological cone ratios, cone-opponent normalization to equal-energy white, and a simple adaptation mechanism to produce color-opponent mechanisms that accurately predict the spectral locations and variability of the unique hues.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2022
Purpose: Blue cone monochromacy (BCM) is a rare inherited cone disorder in which both long- (L-) and middle- (M-) wavelength sensitive cone classes are either impaired or nonfunctional. Assessing genotype-phenotype relationships in BCM can improve our understanding of retinal development in the absence of functional L- and M-cones. Here we examined foveal cone structure in patients with genetically-confirmed BCM, using adaptive optics scanning light ophthalmoscopy (AOSLO).
View Article and Find Full Text PDFPurpose: To compare foveal hypoplasia and the appearance of the ellipsoid zone (EZ) at the fovea in patients with genetically confirmed achromatopsia (ACHM) and blue cone monochromacy (BCM).
Design: Retrospective, multi-center observational study.
Subjects: Molecularly confirmed patients with ACHM (n = 89) and BCM (n = 33).
Background: Mutations in the L/M cone opsin gene array cause abnormally high perceived retinal contrast and the development of myopia. Environmental factors may also lead to high visual contrast and cause myopia. Diffusion optics technology (DOT) lenses are designed to reduce contrast signalling in the retina and slow myopia progression.
View Article and Find Full Text PDFAccording to classical opponent color theory, hue sensations are mediated by spectrally opponent neurons that are excited by some wavelengths of light and inhibited by others, while black-and-white sensations are mediated by spectrally non-opponent neurons that respond with the same sign to all wavelengths. However, careful consideration of the morphology and physiology of spectrally opponent L vs. M midget retinal ganglion cells (RGCs) in the primate retina indicates that they are ideally suited to mediate black-and-white sensations and poorly suited to mediate color.
View Article and Find Full Text PDFNearsightedness (myopia) is a global health problem of staggering proportions that has driven the hunt for environmental and genetic risk factors in hopes of gaining insight into the underlying mechanism and providing new avenues of intervention. Myopia is the dominant risk factor for leading causes of blindness, including myopic maculopathy and retinal detachment. The fundamental defect in myopia-an excessively elongated eyeball-causes blurry distance vision that is correctable with lenses or surgery, but the risk of blindness remains.
View Article and Find Full Text PDFThe detection of motion direction is a fundamental visual function and a classic model for neural computation. In the non-primate retina, direction selectivity arises in starburst amacrine cell (SAC) dendrites, which provide selective inhibition to direction-selective retinal ganglion cells (dsRGCs). Although SACs are present in primates, their connectivity and the existence of dsRGCs remain open questions.
View Article and Find Full Text PDFRed-green color vision deficiency (CVD) is the most common single locus genetic disorder in humans, affecting approximately 8% of males and 0.4% of females [G. H.
View Article and Find Full Text PDFPurpose: The Ishihara pseudoisochromatic (PIC) plate test is the most used test for identifying red-green colour-deficient individuals, but it is not known how the Ishihara results compare with that of genetics testing. Here, the outcome of genotype analysis of OPN1LW and OPN1MW was compared with that of the Ishihara (24-plate ed., 1964) and the Hardy-Rand-Rittler (4th ed.
View Article and Find Full Text PDFPurpose: Many retinal disorders present with pigmentary retinopathy, most of which are progressive conditions. Here we present over nine years of follow up on a case of stable pigmentary retinopathy that is suspected to stem from a congenital rubella infection. Parafoveal cone photoreceptors were tracked through this period to gain insight into photoreceptor disruption in this pigmentary retinopathy.
View Article and Find Full Text PDFLight absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones.
View Article and Find Full Text PDFIntrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light by virtue of containing melanopsin which peaks at about 483 nm. However, in primates, ipRGCs also receive color opponent inputs from short-wavelength-sensitive (S) cone circuits that are well-suited to encode circadian changes in the color of the sky that accompany the rising and setting sun. Here, we review the retinal circuits that endow primate ipRGCs with the cone-opponency capable of encoding the color of the sky and contributing to the wide-ranging effects of short-wavelength light on ipRGC-mediated non-image-forming visual function in humans.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 2021
Purpose: Psychophysical and genetic testing provide substantial information about color vision phenotype and genotype. However, neither reveals how color vision phenotypes and genotypes manifest themselves in individual cones, where color vision and its anomalies are thought to originate. Here, we use adaptive-optics phase-sensitive optical coherence tomography (AO-PSOCT) to investigate these relationships.
View Article and Find Full Text PDFA classic and highly influential model of visual processing proposes that the role of the retina is to compress visual information for optimal transmission to the brain [1]. Drawing on ideas from information theory, an efficient retinal code could be defined as one that reduces redundancy to communicate as much information as possible, given the optic nerve's limited capacity. From this redundancy reduction hypothesis, a theory of retinal color coding emerged in which the three most common retinal ganglion cell (RGC) types captured much of the variance in natural spectra [2].
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2020
The spatial and spectral topography of the cone mosaic set the limits for detection and discrimination of chromatic sinewave gratings. Here, we sought to compare the spatial characteristics of mechanisms mediating hue perception against those mediating chromatic detection in individuals with known spectral topography and with optical aberrations removed with adaptive optics. Chromatic detection sensitivity in general exceeded previous measurements and decreased monotonically for increasingly skewed cone spectral compositions.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2020
Here we present evidence implicating disrupted RNA splicing as a potential cause of inherited tritan color vision. Initially we tested 51 subjects for color vision deficiencies. One made significant tritan errors; the others were classified as normal trichromats.
View Article and Find Full Text PDFPurpose: To investigate the association between PAX6 genotype and macular morphology in congenital aniridia.
Methods: The study included 37 participants (15 males) with congenital aniridia (aged 10-72 years) and 58 age-matched normal controls (18 males). DNA was isolated from saliva samples.
The human long- and middle-wavelength sensitive cone opsin genes exhibit an extraordinary degree of haplotype diversity that results from recombination mechanisms that have intermixed the genes. As a first step in expression, genes-including the protein coding exons and intervening introns-are transcribed. Next, transcripts are spliced to remove the introns and join the exons to generate a mature message that codes for the protein.
View Article and Find Full Text PDF