Molecular dynamics simulations are used to study central collisions between spherical grains and between grains and small grain aggregates (up to 5 grains). For a model material (Lennard-Jones), grain-grain collisions are sticking when the relative velocity v is smaller than the so-called bouncing velocity and bouncing for higher velocities. We find a similar behavior for grain-aggregate collisions.
View Article and Find Full Text PDFMolecular dynamics simulations are used to study collisions between amorphous ice nanoparticles consisting of CO, CO[Formula: see text], Ar and H[Formula: see text]O. The collisions are always sticking for the nanoparticle size (radius of 20 nm) considered. At higher collision velocities, the merged clusters show strong plastic deformation and material mixing in the collision zone.
View Article and Find Full Text PDFCollisions of Lennard-Jones nanoparticles (NPs) may be used to study the generic collision behavior of NPs. We study the collision dynamics of amorphous NPs for oblique collisions using molecular dynamics simulation as a function of collision velocity and impact parameter. In order to allow for NP bouncing, the attraction between atoms originating from differing NPs is reduced.
View Article and Find Full Text PDFClean silica surfaces have a high surface energy. In consequence, colliding silica nanoparticles will stick rather than bounce over a wide range of collision velocities. Often, however, silica surfaces are passivated by adsorbates, in particular water, which considerably reduce the surface energy.
View Article and Find Full Text PDFAvailable macroscopic theories-such as the Johnson-Kendall-Roberts (JKR) model-predict spherical particles to stick to each other at small collision velocities v; above the bouncing velocity, v_{b}, they bounce. We study the details of the bouncing threshold using molecular dynamics simulation for crystalline nanoparticles where atoms interact via the Lennard-Jones potential. We show that the bouncing velocity strongly depends on the nanoparticle orientation during collision; for some orientations, nanoparticles stick at all velocities.
View Article and Find Full Text PDFUsing molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution.
View Article and Find Full Text PDF