Despite effective antiretroviral therapy, cognitive impairment remains prevalent among people with HIV (PWH) and decrements in executive function are particularly prominent. One component of executive function is cognitive flexibility, which integrates a variety of executive functions to dynamically adapt one's behavior in response to changing contextual demands. Though substantial work has illuminated HIV-related aberrations in brain function, it remains unclear how the neural oscillatory dynamics serving cognitive flexibility are affected by HIV-related alterations in neural functioning.
View Article and Find Full Text PDFWhilst the average lifespan of persons with HIV now approximates that of the general population, these individuals are at a much higher risk of developing cognitive impairment with ∼35-70% experiencing at least subtle cognitive deficits. Previous works suggest that HIV impacts both low-level primary sensory regions and higher-level association cortices. Notably, multiple neuroHIV studies have reported elevated levels of spontaneous cortical activity during the pre-stimulus baseline period of task-based experiments, but only a few have examined such activity during resting-state conditions.
View Article and Find Full Text PDFEven in the modern era of combination antiretroviral therapy, aberrations in motor control remain a predominant symptom contributing to age-related functional dependencies (e.g., neurocognitive impairment) in people with HIV (PWH).
View Article and Find Full Text PDFDespite virologic suppression, people living with HIV (PLWH) remain at risk for developing cognitive impairment, with aberrations in motor control being a predominant symptom leading to functional dependencies in later life. While the neuroanatomical bases of motor dysfunction have recently been illuminated, the underlying molecular processes remain poorly understood. Herein, we evaluate the predictive capacity of the mitochondrial redox environment on sensorimotor brain-behavior dynamics in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling.
View Article and Find Full Text PDFBackground: Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) remain at risk for developing neurocognitive impairment primarily due to systemic inflammation that persists despite virologic suppression, albeit the mechanisms underlying such inflammation are poorly understood.
Methods: Herein, we evaluate the predictive capacity of the mitochondrial redox environment on circulating neuro- and T-lymphocyte-related inflammation and concomitant cognitive function in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling. We used state-of-the-art systems biology approaches including Seahorse Analyzer of mitochondrial function, electron paramagnetic resonance (EPR) spectroscopy to measure superoxide levels, antioxidant activity assays, and Meso Scale multiplex technology to quantify inflammatory proteins in the periphery.
Background: Measles outbreaks have become increasingly common due to deteriorating vaccination rates, fluctuating herd immunity, and varying antibody decline. Limited knowledge exists regarding prevalence and risk factors associated with measles seronegativity among persons with HIV (PWH).
Methods: This was a cross-sectional study conducted at an academic HIV clinic in Omaha, Nebraska.