Publications by authors named "Maureen Devlin"

Objectives: Morphological intraspecific variation is due to the balance between skeletal plasticity and genetic constraint on the skeleton. Osteogenic responses to external stimuli, such as locomotion, have been well documented interspecifically across the primate order, but less so at the intraspecific level. Here, we examine the differences in cross-sectional variability of the femur, humerus, radius, and tibia in Pan troglodytes troglodytes versus Gorilla gorilla gorilla.

View Article and Find Full Text PDF

Children with bone fragility often exhibit elevated bone marrow lipid levels, which may affect mesenchymal stem cell (MSC) differentiation potential and ultimately bone strength via cell-autonomous and/or non-cell-autonomous factors. Here, we use standard co-culture techniques to study biological effects of bone marrow cell-derived secretome on MSC. Bone marrow was collected during routine orthopedic surgery, and the entire marrow cell preparation, with or without red blood cell (RBC) reduction, was plated at three different densities.

View Article and Find Full Text PDF

Objectives: Bone is a dynamic organ under continual turnover influenced by life history stage, energy dynamics, diet, climate, and disease. Bone turnover data have enormous potential in biological anthropology for testing evolutionary and biocultural hypotheses, yet few studies have integrated these biomarkers. In the present article we systematically review the current availability, future viability, and applicability of measuring bone turnover markers (BTMs) in dried blood spot (DBS) samples obtained from finger prick whole blood.

View Article and Find Full Text PDF

Introduction And Hypothesis: Human menopause transition and post-menopausal syndrome, driven by reduced ovarian activity and estrogen levels, are associated with an increased risk for symptoms including but not limited to sexual dysfunction, metabolic disease, and osteoporosis. Current treatments are limited in efficacy and may have adverse consequences, so investigation for additional treatment options is necessary. Previous studies have demonstrated that percutaneous tibial nerve stimulation (PTNS) and electro-acupuncture near the tibial nerve are minimally invasive treatments that increase vaginal blood perfusion or serum estrogen in the rat model.

View Article and Find Full Text PDF

The reliability of lipidomics, an approach to identify the presence and interactions of lipids, to analyze the bone marrow lipid composition among pediatric populations with bone fragility is unknown. The objective of this study was to assess the test-retest reliability, standard error of measurement (SEM), and the minimal detectable change (MDC) of vertebral bone marrow lipid composition determined by targeted lipidomics among children with varying degrees of bone fragility undergoing routine orthopedic surgery. Children aged 10 to 19 years, with a confirmed diagnosis of adolescent idiopathic scoliosis ( = 13) or neuromuscular scoliosis and cerebral palsy ( = 3), undergoing posterior spinal fusion surgery at our institution were included in this study.

View Article and Find Full Text PDF

Background: There is evidence that the extent of vertebral bone marrow adiposity increases caudally along the vertebral column in children and adolescents. However, no studies have examined the lipid composition of bone marrow along the vertebral column, which may uniquely influence bone acquisition and metabolism during growth independent of the amount of bone marrow adipose tissue. The goal of this study was to characterize the pattern of lipid composition index measures from the thoracic to lumbar spine (T11-L4) among a sample of adolescents with idiopathic scoliosis (AIS) undergoing routine orthopedic surgical care for scoliosis correction.

View Article and Find Full Text PDF

Background: Lipidomics, a branch of metabolomics, is an attractive technique to characterize bone marrow lipid composition, which may be associated with skeletal acquisition and homeostasis. However, the reliability of lipidomics-derived lipid composition of the bone marrow is unknown, especially for pediatric populations with bone fragility. The purpose of this study was to evaluate the intersite reliability and standard error of measurement (SEM) of vertebral bone marrow lipid composition at the thoracic (T11/T12) and lumbar (L1/L2) spine determined by targeted lipidomics among children with varying degrees of bone fragility undergoing routine orthopedic surgery.

View Article and Find Full Text PDF

Background: The prevalence of allergic and autoimmune conditions has been steadily increasing in wealthy nations over the past century. One hypothesis put forward to explain this is the Old Friends Hypothesis, which posits that increased hygiene, urbanization, and lifestyle changes have reduced our exposure to parasites and microbes that we co-evolved with, resulting in immune dysregulation. However, research in traditionally living populations, who are exposed to greater parasite and pathogen loads such as those encountered during our evolution, is limited, in part due to a lack of minimally invasive, field-friendly biomarkers of autoimmune disorders.

View Article and Find Full Text PDF

Objectives: Investigating factors that contribute to bone loss and accretion across populations in remote settings is challenging, particularly where diagnostic tools are scarce. To mitigate this challenge, we describe validation of a commercial ELISA assay to measure osteocalcin, a biomarker of bone formation, from dried blood spots (DBS).

Methods: We validated the Osteocalcin Human SimpleStep ELISA kit from Abcam (ab1951214) using 158 matched plasma and DBS samples.

View Article and Find Full Text PDF

Objectives: A number of basic questions about bone biology have not been answered, including population differences in bone turnover. In part, this stems from the lack of validated minimally invasive biomarker techniques to measure bone formation and resorption in field-based population-level research. The present study addresses this gap by validating a fingerprick dried blood spot (fDBS) assay for tartrate-resistant acid phosphatase 5b (TRACP-5b), a well-defined biomarker of bone resorption and osteoclast number.

View Article and Find Full Text PDF

Individuals with cerebral palsy (CP) have an increased risk of fracture throughout their lifespan based on an underdeveloped musculoskeletal system, excess body fat, diminished mechanical loading, and early development of noncommunicable diseases. However, the epidemiology of fracture among adults with CP is unknown. The purpose of this cross-sectional study was to determine the prevalence of fracture among a large sample of privately insured adults with CP, as compared with adults without CP.

View Article and Find Full Text PDF

The phenotypic response of bones differing in morphological, compositional, and mechanical traits to an increase in loading during growth is not well understood. We tested whether bones of two inbred mouse strains that assemble differing sets of traits to achieve mechanical homeostasis at adulthood would show divergent responses to voluntary cage-wheel running. Female A/J and C57BL6/J (B6) 4-week-old mice were provided unrestricted access to a standard cage-wheel for 4 weeks.

View Article and Find Full Text PDF

Objectives: Humans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold-induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT).

View Article and Find Full Text PDF

Background: Individuals with cerebral palsy (CP) are at an increased risk for age-related morbidities due to functional impairments, maladapted growth, and altered body composition. While musculoskeletal (MSK) deficits are present in children, little is understood about MSK morbidity throughout the lifespan in those with CP. The purpose of this study was to examine the age-related trajectories of MSK morbidity and multimorbidity throughout adulthood in those with CP.

View Article and Find Full Text PDF

Individuals with cerebral palsy exhibit neuromuscular complications and low physical activity levels. Adults with cerebral palsy exhibit a high prevalence of chronic diseases, which is associated with musculoskeletal deficits. Children with cerebral palsy have poor musculoskeletal accretion accompanied by excess bone marrow fat, which may lead to weaker bones.

View Article and Find Full Text PDF

Purpose: Individuals with cerebral palsy (CP) are at increased risk for frailty and chronic disease due to factors experienced throughout the lifespan, such as excessive sedentary behaviors and malnutrition. However, little is known about noncommunicable diseases (NCDs) and multimorbidity profiles in young adults with CP. The study objective was to compare NCD and multimorbidity profiles between young adults with and without CP.

View Article and Find Full Text PDF

Cross-sex hormone therapy (XHT) is widely used by transgender people to alter secondary sex characteristics to match their desired gender presentation. Here, we investigate the long-term effects of XHT on bone health using a murine model. Female mice underwent ovariectomy at either 6 or 10 wk and began weekly testosterone or vehicle injections.

View Article and Find Full Text PDF

The discovery that metabolically active brown fat is present in humans throughout ontogeny raises new questions about the interactions between thermoregulatory, metabolic, and skeletal homeostasis. Brown adipose tissue (BAT) is distinct from white adipose tissue (WAT) for its ability to burn, rather than store, energy. BAT uniquely expresses uncoupling protein-1 (abbreviated as UCP1), which diverts the energy produced by cellular respiration to generate heat.

View Article and Find Full Text PDF

Obesity and osteoporosis are two of the most common chronic disorders of the 21st century. Both are accompanied by significant morbidity. The only place in the mammalian organism where bone and fat lie adjacent to each other is in the bone marrow.

View Article and Find Full Text PDF

Humans possess the longest Achilles tendon relative to total muscle length of any primate, an anatomy that is beneficial for bipedal locomotion. Reconstructing the evolutionary history of the Achilles tendon has been challenging, in part because soft tissue does not fossilize. The only skeletal evidence for Achilles tendon anatomy in extinct taxa is the insertion site on the calcaneal tuber, which is rarely preserved in the fossil record and, when present, is equivocal for reconstructing tendon morphology.

View Article and Find Full Text PDF

Aim/hypothesis: Maternal diabetes and high-fat feeding during pregnancy have been linked to later life outcomes in offspring. To investigate the effects of both maternal and paternal hyperglycemia on offspring phenotypes, we utilized an autosomal dominant mouse model of diabetes (hypoinsulinemic hyperglycemia in Akita mice). We determined metabolic and skeletal phenotypes in wildtype offspring of Akita mothers and fathers.

View Article and Find Full Text PDF

This study tested the hypothesis that talar trabecular microarchitecture reflects the loading patterns in the primate ankle joint, to determine whether talar trabecular morphology might be useful for inferring locomotor behavior in fossil hominins. Trabecular microarchitecture was quantified in the anteromedial, anterolateral, posteromedial, and posterolateral quadrants of the talar body in humans and non-human primates using micro-computed tomography. Trabecular bone parameters, including bone volume fraction, trabecular number and thickness, and degree of anisotropy differed between primates, but not in a manner entirely consistent with hypotheses derived from locomotor kinematics.

View Article and Find Full Text PDF

Patterns of variation in bone size and shape provide crucial data for reconstructing hominin paleobiology, including ecogeographic adaptation, life history, and functional morphology. Measures of bone strength, including robusticity (diaphyseal thickness relative to length) and cross-sectional geometric properties such as moments of area, are particularly useful for inferring behavior because bone tissue adapts to its mechanical environment. Particularly during skeletal growth, exercise-induced strains can stimulate periosteal modeling so that, to some extent, bone thickness reflects individual behavior.

View Article and Find Full Text PDF

Body fat, or adipose tissue, is a crucial energetic buffer against starvation in humans and other mammals, and reserves of white adipose tissue (WAT) rise and fall in parallel with food intake. Much less is known about the function of bone marrow adipose tissue (BMAT), which are fat cells found in bone marrow. BMAT mass actually increases during starvation, even as other fat depots are being mobilized for energy.

View Article and Find Full Text PDF