J Environ Manage
February 2024
Recent trends in wildfire area burned have been characterized by large patches with high densities of standing dead trees, well outside of historical range of variability in many areas and presenting forest managers with difficult decisions regarding post-fire management. Post-fire tree harvesting, commonly called salvage logging, is a controversial management tactic that is often undertaken to recoup economic loss and, more recently, also to reduce future fuel hazard, especially when coupled with surface fuel reduction. It is unclear, however, whether the reductions in future fuels translate to meaningful changes to reburn fire behavior, particularly in the context of potentially detrimental effects of harvest on other ecosystem services.
View Article and Find Full Text PDFIncreasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity.
View Article and Find Full Text PDFLarge wildfires (>50,000 ha) are becoming increasingly common in semiarid landscapes of the western United States. Although fuel reduction treatments are used to mitigate potential wildfire effects, they can be overwhelmed in wind-driven wildfire events with extreme fire behavior. We evaluated drivers of fire severity and fuel treatment effectiveness in the 2014 Carlton Complex, a record-setting complex of wildfires in north-central Washington State.
View Article and Find Full Text PDFUnder a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70,000 ha of mixed-conifer forests in the North Cascades range of Washington State and involved 387 past harvest and fuel treatment units. A secondary objective was to investigate other drivers of burn severity including landform, weather, vegetation characteristics, and a recent mountain pine beetle outbreak.
View Article and Find Full Text PDFUnderstanding the environmental controls on historical wildfires, and how they changed across spatial scales, is difficult because there are no surviving explicit records of either weather or vegetation (fuels). Here we show how power laws associated with fire-event time series arise in limited domains of parameters that represent critical transitions in the controls on landscape fire. Comparison to a self-organized criticality model shows that the latter mimics historical fire only in a limited domain of criticality, and is not an adequate mechanism to explain landscape fire dynamics, which are shaped by both endogenous and exogenous controls.
View Article and Find Full Text PDFBackground And Aims: Constructing functional-structural plant models (FSPMs) is a valuable method for examining how physiology and morphology interact in determining plant processes. However, such models always have uncertainty concerned with whether model components have been selected and represented effectively, with the number of model outputs simulated and with the quality of data used in assessment. We provide a procedure for defining uncertainty of an FSPM and how this uncertainty can be reduced.
View Article and Find Full Text PDFMany hypotheses have been advanced about factors that control tree longevity. We use a simulation model with multi-criteria optimization and Pareto optimality to determine branch morphologies in the Pinaceae that minimize the effect of growth limitations due to water stress while simultaneously maximizing carbohydrate gain. Two distinct branch morphologies in the Pareto optimal space resemble Pseudotsuga menziesii (Mirb.
View Article and Find Full Text PDFSevere polytraumatic injuries sustained in combat operations require intensive rehabilitation and often result in complex, long-term disabilities. Understandably, these significant injuries have a substantial emotional impact on families. In this article, the authors discuss the importance of a family-centered care philosophy, the interdisciplinary team approach, the therapeutic milieu, and two family-systems treatments (medical family therapy and ambiguous loss theory).
View Article and Find Full Text PDFReiteration is the process whereby architectural units are replicated within a tree. Both immediate (from apical buds) and delayed (from suppressed or adventitious buds) reiteration can be seen in many tree species where architectural units ranging from clusters of shoots to entire branches and stems are replicated. In large old trees and suppressed trees, delayed reiteration occurs without an obvious external stimulus such as defoliation or traumatic loss of the branch apex.
View Article and Find Full Text PDF