Publications by authors named "Maureen A Hagan"

Cortical visual prostheses are designed to treat blindness by restoring visual perceptions through artificial electrical stimulation of the primary visual cortex (V1). Intracortical microelectrodes produce the smallest visual percepts and thus higher resolution vision - like a higher density of pixels on a monitor. However, intracortical microelectrodes must maintain a minimum spacing to preserve tissue integrity.

View Article and Find Full Text PDF

Ocular following is a short-latency, reflexive eye movement that tracks wide-field visual motion. It has been studied extensively in humans and macaques and is an appealing behavior for studying sensory-motor transformations in the brain because of its rapidity and rigidity. We explored ocular following in the marmoset, an emerging model in neuroscience because their lissencephalic brain allows direct access to most cortical areas for imaging and electrophysiological recordings.

View Article and Find Full Text PDF

Blindness affects approximately 40 million people worldwide and has inspired the development of cortical visual prostheses for restoring sight. Cortical visual prostheses electrically stimulate neurons of the visual cortex to artificially evoke visual percepts. Of the 6 layers of the visual cortex, layer 4 contains neurons that are likely to evoke a visual percept.

View Article and Find Full Text PDF

In the reach and saccade regions of the posterior parietal cortex (PPC), multiregional communication depends on the timing of neuronal activity with respect to beta-frequency (10-30 Hz) local field potential (LFP) activity, termed dual coherence. Neural coherence is believed to reflect neural excitability, whereby spiking tends to occur at a particular phase of LFP activity, but the mechanisms of multiregional dual coherence remain unknown. Here, we investigate dual coherence in the PPC of non-human primates performing eye-hand movements.

View Article and Find Full Text PDF

Intracortical visual prostheses are being developed to restore sight in people who are blind. The resolution of artificial vision is dictated by the location, proximity and number of electrodes implanted in the brain. However, increasing electrode count and proximity is traded off against tissue damage.

View Article and Find Full Text PDF

Looking and reaching are controlled by different brain regions and are coordinated during natural behaviour. Understanding how flexible, natural behaviours such as coordinated looking and reaching are controlled depends on understanding how neurons in different regions of the brain communicate. Neural coherence in a gamma-frequency (40-90 Hz) band has been implicated in excitatory multiregional communication.

View Article and Find Full Text PDF

The technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal-parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP).

View Article and Find Full Text PDF

Background: Cortical visual prostheses often use penetrating electrode arrays to deliver microstimulation to the visual cortex. To optimize electrode placement within the cortex, the neural responses to microstimulation at different cortical depths must first be understood.

Objective: We investigated how the neural responses evoked by microstimulation in cortex varied with cortical depth, of both stimulation and response.

View Article and Find Full Text PDF

The marmoset monkey () has gained attention in neurophysiology research as a new primate model for visual processing and behavior. In particular, marmosets have a lissencephalic cortex, making multielectrode, optogenetic, and calcium-imaging techniques more accessible than other primate models. However, the degree of homology of brain circuits for visual behavior with those identified in macaques and humans is still being ascertained.

View Article and Find Full Text PDF

There is evidence to suggest that motor execution and motor imagery both involve planning and execution of the same motor plan, however, in the latter the output is inhibited. Currently, little is known about the underlying neural mechanisms of motor output inhibition during motor imagery. Uncovering the distinctive characteristics of motor imagery may help us better understand how we abstract complex thoughts and acquire new motor skills.

View Article and Find Full Text PDF

Coherent neuronal dynamics play an important role in complex cognitive functions. Optogenetic stimulation promises to provide new ways to test the functional significance of coherent neural activity. However, the mechanisms by which optogenetic stimulation drives coherent dynamics remain unclear, especially in the nonhuman primate brain.

View Article and Find Full Text PDF

Primates with primary visual cortex (V1) damage often retain residual motion sensitivity, which is hypothesized to be mediated by middle temporal area (MT). MT neurons continue to respond to stimuli shortly after V1 lesions; however, experimental and clinical studies of lesion-induced plasticity have shown that lesion effects can take several months to stabilize. It is unknown what physiological changes occur in MT and whether neural responses persist long after V1 damage.

View Article and Find Full Text PDF

The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements.

View Article and Find Full Text PDF

The study of neuronal responses to random-dot motion patterns has provided some of the most valuable insights into how the activity of neurons is related to perception. In the opposite directions of motion paradigm, the motion signal strength is decreased by manipulating the coherence of random dot patterns to examine how well the activity of single neurons represents the direction of motion. To extend this paradigm to populations of neurons, studies have used modelling based on data from pairs of neurons, but several important questions require further investigation with larger neuronal datasets.

View Article and Find Full Text PDF

Invasive Brain-Computer Interfaces (BCIs) require surgeries with high health-risks. The risk-to-benefit ratio of the procedure could potentially be improved by pre-surgically identifying the ideal locations for mental strategy classification. We recorded high-spatiotemporal resolution blood-oxygenation-level-dependent (BOLD) signals using functional MRI at 7 Tesla in eleven healthy participants during two motor imagery tasks.

View Article and Find Full Text PDF

The integration of multiple sensory modalities is a key aspect of brain function, allowing animals to take advantage of concurrent sources of information to make more accurate perceptual judgments. For many years, multisensory integration in the cerebral cortex was deemed to occur only in high-level "polysensory" association areas. However, more recent studies have suggested that cross-modal stimulation can also influence neural activity in areas traditionally considered to be unimodal.

View Article and Find Full Text PDF

Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated.

View Article and Find Full Text PDF

Neurons in the middle temporal area (MT) of the primate cerebral cortex respond to moving visual stimuli. The sensitivity of MT neurons to motion signals can be characterized by using random-dot stimuli, in which the strength of the motion signal is manipulated by adding different levels of noise (elements that move in random directions). In macaques, this has allowed the calculation of "neurometric" thresholds.

View Article and Find Full Text PDF

For nearly a century it has been observed that some residual visually guided behavior can persist after damage to the primary visual cortex (V1) in primates. The age at which damage to V1 occurs leads to different outcomes, with V1 lesions in infancy allowing better preservation of visual faculties in comparison with those incurred in adulthood. While adult V1 lesions may still allow retention of some limited visual abilities, these are subconscious-a characteristic that has led to this form of residual vision being referred to as blindsight.

View Article and Find Full Text PDF

Lateral spatial interactions among elements of a scene, which either enhance or degrade visual performance, are ubiquitous in vision. The neural mechanisms underlying lateral spatial interactions are a matter of debate, and various hypotheses have been proposed. Suppressive effects may be due to local inhibitory interactions, whereas facilitatory effects are typically ascribed either to the function of long-range horizontal projections in V1 or to uncertainty reduction.

View Article and Find Full Text PDF

Here, we report that temporally patterned, coherent spiking activity in the posterior parietal cortex (PPC) coordinates the timing of looking and reaching. Using a spike-field approach, we identify a population of parietal area LIP neurons that fire spikes coherently with 15 Hz beta-frequency LFP activity. The firing rate of coherently active neurons predicts the reaction times (RTs) of coordinated reach-saccade movements but not of saccades when made alone.

View Article and Find Full Text PDF

Prosthetic devices to replace upper limb function have made great progress over the last decade. However, current control modalities for these prosthetics still have severe limitations in the degrees of freedom they offer patients. Brain machine interfaces offer the possibility to improve the functionality of prosthetics.

View Article and Find Full Text PDF

The posterior parietal cortex is situated between visual and motor areas and supports coordinated visually guided behavior. Area LIP in the intraparietal sulcus contains representations of visual space and has been extensively studied in the context of saccades. However, area LIP has not been studied during coordinated movements, so it is not known whether saccadic representations in area LIP are influenced by coordinated behavior.

View Article and Find Full Text PDF