The effects of velocity and gas type on foam flow through porous media have yet to be completely elucidated. Pressure drop and capillary pressure measurements were made at ambient conditions during a series of foam quality scan experiments in a homogenous sandpack while foam texture was simultaneously visualized. New insights into foam-flow behavior in porous media were discovered.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2022
Hypothesis: Capillary pressure (P) is an intrinsic property of aqueous foams that has been demonstrated to play an important role in lamella rupture. Thus, directly measuring in-situ capillary pressure of a foam flowing through porous media has potential to greatly improve understanding of this complex process.
Experiments: A capillary pressure probe was constructed and validated.
We investigate the dynamic adsorption of anionic surfactant C alpha olefin sulfonate on Berea sandstone cores with different surface wettability and redox states under high temperature that represents reservoir conditions. Surfactant adsorption levels are determined by analyzing the effluent history data with a dynamic adsorption model assuming Langmuir isotherm. A variety of analyses, including surface chemistry, ionic composition, and chromatography, is performed.
View Article and Find Full Text PDFThe apparent viscosity of viscous heavy oil emulsions in water can be less than that of the bulk oil. Microfluidic flooding experiments were conducted to evaluate how alkali-surfactant-foam enhanced oil recovery (ASF EOR) of heavy oil is affected by emulsion formation. A novel phase-behavior viscosity map-a plot of added salinity vs.
View Article and Find Full Text PDFThe injection of low-salinity brine enhances oil recovery by altering the mineral wettability in carbonate reservoirs. However, the reported effectiveness of low-salinity water varies significantly in the literature, and the underlying mechanism of wettability alteration is controversial. In this work, we investigate the relationships between characteristics of crude oils and the oils' response to low-salinity water in a spontaneous imbibition test, aiming (1) to identify suitable indicators of the effectiveness of low-salinity water and (2) to evaluate possible mechanisms of low-salinity-induced wettability alteration, including rock/oil charge repulsion and microdispersion formation.
View Article and Find Full Text PDFHypothesis: We present a systematic study of the "smart water" induced wettability alteration. This process is believed to be greatly affected by the brine salinity and the presence of Mg and SO in the brine.
Experiments And Modelling: To characterize the wettability alteration, we perform spontaneous imbibition measurement using Indiana limestone cores and a model oil with added naphthenic acid.
J Colloid Interface Sci
March 2018
Hypothesis: The adsorption of anionic surfactants onto positively charged carbonate minerals is typically high due to electrostatic interactions. By blending anionic surfactants with cationic or zwitterionic surfactants, which naturally form surfactant complexes, surfactant adsorption is expected to be influenced by a competition between surfactant complexes and surfactant-surface interactions.
Experiments: The adsorption behavior of surfactant blends known to form complexes was investigated.
Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil.
View Article and Find Full Text PDFThis study presents experiment and surface complexation modeling (SCM) of synthetic calcite zeta potential in brine with mixed potential determining ions (PDI) under various CO partial pressures. Such SCM, based on systematic zeta potential measurement in mixed brines (Mg, SO, Ca and CO), is currently not available in the literature and is expected to facilitate understanding of the role of electrostatic forces in calcite wettability alteration. We first use a double layer SCM to model experimental zeta potential measurements and then systematically analyze the contribution of charged surface species.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2017
Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures.
View Article and Find Full Text PDFThe static adsorption of CE, which is a highly ethoxylated nonionic surfactant, was studied on different minerals using high-performance liquid chromatography (HPLC) combined with an evaporative light scattering detector (ELSD). Of particular interest is the surfactant adsorption in the presence of CO because it can be used for foam flooding in enhanced oil recovery applications. The effects of the mineral type, impurities, salinity, and temperature were investigated.
View Article and Find Full Text PDFThe methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.
View Article and Find Full Text PDF