Soft condensed matter is challenging to study due to the vast time and length scales that are necessary to accurately represent complex systems and capture their underlying physics. Multiscale simulations are necessary to study processes that have disparate time and/or length scales, which abound throughout biology and other complex systems. Herein we present ezAlign, an open-source software for converting coarse-grained molecular dynamics structures to atomistic representation, allowing multiscale modeling of biomolecular systems.
View Article and Find Full Text PDFWe present a unique case of a man presenting with progressive short-term memory deficits over 10+ years who was found to have a large intraventricular cavernoma in the anterior wall of the third ventricle with invasion of medial limbic structures. Identifying intraventricular cavernomas early is crucial to prevent substantial growth and to increase the chance of successful patient outcomes.
View Article and Find Full Text PDFThe LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t.
View Article and Find Full Text PDFCharacterizing the biophysical properties of bacterial membranes is critical for understanding the protective nature of the microbial envelope, interaction of biological membranes with exogenous materials, and designing new antibacterial agents. Presented here are molecular dynamics simulations for two cationic quaternary ammonium compounds, and the anionic and nonionic form of a fatty acid molecule interacting with a bacterial inner membrane. The effect of the tested materials on the properties of the model membranes are evaluated with respect to various structural properties such as the lateral pressure profile, lipid tail order parameter, and the bilayer's electrostatic potential.
View Article and Find Full Text PDFAedes aegypti is the main vector of arboviral diseases such as dengue, chikungunya and Zika. A key feature for disease transmission modeling and vector control planning is adult mosquito dispersal. We studied Ae aegypti adult dispersal by conducting a mark-capture study of naturally occurring Ae.
View Article and Find Full Text PDFThe use of stable isotope enrichment to mark mosquitoes has provided a tool to study the biology of vector species. In this study, we evaluated isotopic marking of Aedes aegypti (L.) (Diptera: Culicidae) in a laboratory setting.
View Article and Find Full Text PDFBackground: Stable isotope labeling is a promising method for use in insect mark-capture and dispersal studies. Culicoides biting midges, which transmit several important animal pathogens, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), are small flies that develop in various semi-aquatic habitats. Previous Culicoides dispersal studies have suffered from the limitations of other labeling techniques, and an inability to definitively connect collected adult midges to specific immature development sites.
View Article and Find Full Text PDFActinide-lanthanide separation (ALSEP) has been a topic of interest in recent years as it has been shown to selectively extract problematic metals from spent nuclear fuel. However, the process suffers from slow kinetics, prohibiting it from being applied to nuclear facilities. In an effort to improve the process, many fundamental studies have been performed, but the majority have only focused on the thermodynamics of separation.
View Article and Find Full Text PDFCorrection for 'Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism - a gas-phase ab initio study' by Vivek S. Bharadwaj et al., Phys.
View Article and Find Full Text PDFMolecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations.
View Article and Find Full Text PDFPerfluorocyclobutyl polymers are thermally and chemically stable, may be produced without a catalyst via thermal 2π-2π cycloaddition, and can form block structures, making them suitable for commercialization of specialty polymers. Thermal 2π-2π cycloaddition is a rare reaction that begins in the singlet state and proceeds through a triplet intermediate to form an energetically stable four-membered ring in the singlet state. This reaction involves two changes in spin state and, thus, two spin-crossover transitions.
View Article and Find Full Text PDFAn optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy.
View Article and Find Full Text PDFMany studies have suggested that the processing of lignocellulosic biomass could provide a renewable feedstock to supplant much of the current demand on petroleum sources. Currently, alkyl imidazolium-based ionic liquids (ILs) have shown considerable promise in the pretreatment, solvation, and hydrolysis of lignocellulosic materials although their high cost and unfavorable viscosity has limited their widespread use. Functionalizing these ILs with an oligo(ethoxy) tail has previously been shown through experiment to decrease the IL's viscosity resulting in enhanced mass transport characteristics, in addition to other favorable traits including decreased inhibition of some enzymes.
View Article and Find Full Text PDFThe role of protein dynamics in enzyme catalysis is one of the most highly debated topics in enzymology. The main controversy centers around what may be defined as functionally significant conformational fluctuations and how, if at all, these fluctuations couple to enzyme catalyzed events. To shed light on this debate, the conformational dynamics along the transition path surmounting the highest free energy barrier have been herein investigated for the rate limiting proton transport event in human carbonic anhydrase (HCA) II.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2016
Earth abundant semiconducting type II Si clathrates have attracted attention as photovoltaic materials due to their wide band gaps. To realize the semiconducting properties of these materials, guest species that arise during the synthesis process must be completely evacuated from the host cage structure post synthesis. A common guest species utilized in the synthesis of Si clathrates is Na (metal), which templates the clathrate cage formation.
View Article and Find Full Text PDFBackground: The plant phytohormone auxin controls many aspects of plant growth and development, which largely depends on its uneven distribution in plant tissues. Transmembrane proteins of the PIN family are auxin efflux facilitators. They play a key role in polar auxin transport and are associated with auxin asymmetrical distribution in plants.
View Article and Find Full Text PDFDespite the importance of fatty-acid methyl esters (FAMEs) as key components of various green solvents, detergents, plasticizers, and biodiesels, our understanding of these systems at the molecular level is limited. An enhanced molecular-level perspective of FAMEs will enable a detailed analysis of the polymorph and crystallization phenomena that adversely impact flow properties at low temperatures. Presented here, is the parameterization and validation of a charge-modified generalized amber force field (GAFF) for eight common FAMEs and two representative biodiesel mixtures.
View Article and Find Full Text PDFThe ability to utilize biomass as a feedstock for liquid fuel and value-added chemicals is dependent on the efficient and economic utilization of lignin, hemicellulose, and cellulose. In current bioreactors, cellulases are used to convert crystalline and amorphous cellulose to smaller oligomers and eventually glucose by means of cellulase enzymes. A critical component of the enzyme catalyzed hydrolysis reaction is the degree to which the enzyme can facilitate substrate ring deformation from the chair to a more catalytically active conformation (e.
View Article and Find Full Text PDFA major challenge for the utilization of lignocellulosic feedstocks for liquid fuels and other value added chemicals has been the recalcitrant nature of crystalline cellulose to various hydrolysis techniques. Ionic liquids (ILs) are considered to be a promising solvent for the dissolution and conversion of cellulose to simple sugars, which has the potential to facilitate the unlocking of biomass as a supplement and/or replacement for petroleum as a feedstock. Recent studies have revealed that the orientation of the hydroxymethyl group, described via the ω dihedral, and the glycosidic bond, described via the φ-ψ dihedrals, are significantly modified in the presence of ILs.
View Article and Find Full Text PDFThe fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.
View Article and Find Full Text PDFElectronic and structural properties of the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulonyl)imide are studied using density functional theory (DFT) methods in addition to infrared and UV-vis spectroscopy. The DFT methods were conducted for both gas phase and solution phase using the integral equation formalism polarizable continuum model, while optical absorption experiments were conducted using neat and dilute methanol solutions. Three energetically similar conformers were obtained for each of the gas phase and solution phase DFT calculations.
View Article and Find Full Text PDFHuman carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3 (-), respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH(-)/H2O) in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level.
View Article and Find Full Text PDFThough it is known that different familial relationships influence one another (e.g., Yu & Gamble, 2008) the influence of outside relationships (i.
View Article and Find Full Text PDF