Human epidermal growth factor receptor-2 (HER2) is a well-recognised biomarker associated with 25% of breast cancers. In most cases, early detection and/or treatment correlates with an increased chance of survival. This study, has identified and characterised a highly specific anti-HER2 single-domain antibody (sdAb), NM-02, as a potential theranostic tool.
View Article and Find Full Text PDFOsteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice.
View Article and Find Full Text PDFToxoplasma gondii parasites must actively invade host cells to propagate. Secretory microneme proteins have been shown to be important for both gliding motility and active invasion. MIC2-M2AP is a protein complex that is essential for productive motility and rapid invasion by binding to host cell surface receptors.
View Article and Find Full Text PDFToxoplasma gondii is the model parasite of the phylum Apicomplexa, which contains obligate intracellular parasites of medical and veterinary importance. Apicomplexans invade host cells by a multistep process involving the secretion of adhesive microneme protein (MIC) complexes. The subtilisin protease TgSUB1 trims several MICs on the parasite surface to activate gliding motility and host invasion.
View Article and Find Full Text PDFThe geometric mean 50% inhibitory concentration (IC50) for Proveblue, a methylene blue complying with the European Pharmacopoeia, was more active on 23 P. falciparum strains than chloroquine, quinine, mefloquine, monodesethylamodiaquine, and lumefantrine. We did not find significant associations between the Proveblue IC50 and polymorphisms in the pfcrt, pfmdr1, pfmdr2, pfmrp, and pfnhe-1 genes or the copy numbers of the pfmdr1 and pfmdr2 genes, all of which are involved in antimalarial resistance.
View Article and Find Full Text PDFBackground: The aim of the present work was to assess the in vitro cross-resistance of pyronaridine with other quinoline drugs, artesunate and several other commonly used anti-malarials and to evaluate whether decreased susceptibility to pyronaridine could be associated with genetic polymorphisms in genes involved in reduced quinoline susceptibility, such as pfcrt, pfmdr1, pfmrp and pfnhe.
Methods: The in vitro chemosusceptibility profiles of 23 strains of Plasmodium falciparum were analysed by the standard 42-hour 3H-hypoxanthine uptake inhibition method for pyronaridine, artesunate, chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine and doxycycline. Genotypes were assessed for pfcrt, pfmdr1, pfnhe-1 and pfmrp genes.
We have analyzed the profiles of 23 of Plasmodium falciparum strains for their in vitro chemosusceptibilities to piperaquine (PPQ), dihydroartemisinin (DHA), chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine, and doxycycline (DOX) in association with polymorphisms in genes involved in quinoline resistance (Plasmodium falciparum crt [pfcrt], pfmdr1, pfmrp, and pfnhe). The 50% inhibitory concentrations (IC(50)s) for PPQ ranged from 29 to 98 nM (geometric mean = 57.8 nM, 95% confidence interval [CI] = 51 to 65) and from 0.
View Article and Find Full Text PDFObjectives: The aim of the study was to assess the in vitro potentiating effects of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, in combination with mefloquine, chloroquine or monodesethylamodiaquine against Plasmodium falciparum and to evaluate whether the effects of atorvastatin could be associated with mutations or gene copy number in multidrug resistance (MDR)-like protein genes.
Methods: The susceptibilities of 21 parasite strains to combinations of atorvastatin with mefloquine, chloroquine or monodesethylamodiaquine were assessed using the in vitro isotopic microtest. Genotypes and gene copy number were assessed for pfmdr1, pfmdr2 and pfmrp genes.
Background: Quinine (QN) remains the first line anti-malarial drug for the treatment of complicated malaria in Europe and Africa. The emergence of QN resistance has been documented. QN resistance is not yet a significant problem, but there is an urgent need to discover partners for use in combination with QN.
View Article and Find Full Text PDFSlit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit-Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons.
View Article and Find Full Text PDFAtorvastatin (AVA) is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. AVA exposure resulted in the reduced in vitro growth of 22 Plasmodium falciparum strains, with the 50% inhibitory concentrations (IC(50)s) ranging from 2.5 microM to 10.
View Article and Find Full Text PDFPolymorphisms in the Plasmodium falciparum crt (Pfcrt), Pfmdr1, and Pfmrp genes were not significantly associated with quinine (QN) 50% inhibitory concentrations (IC(50)s) in 23 strains of Plasmodium falciparum. An increased number of DNNND repeats in Pfnhe-1 microsatellite ms4760 was associated with an increased IC(50) of QN (P = 0.0007).
View Article and Find Full Text PDFThe capacity of ten molecules for reversing resistance in Plasmodium falciparum in vitro to quinoline antimalarial drugs, such as chloroquine (CQ), quinine (QN), mefloquine (MQ) and monodesethylamodiaquine (MDAQ), was assessed against 27 Plasmodium falciparum isolates. Four of these compounds were 9,10-dihydroethanoanthracene derivatives (DEAs). These DEAs reversed 75 to 92% of the CQ resistant strains.
View Article and Find Full Text PDFThe in vitro activity of ferroquine (FQ) (SR97193), a 4-aminoquinoline antimalarial compound that contains a ferrocenic nucleus, against 15 Plasmodium falciparum strains was assessed and compared with those of chloroquine (CQ), quinine (QN), monodesethylamodiaquine (MDAQ), and mefloquine (MQ). These 15 strains were genotyped for polymorphisms in quinoline resistance-associated genes such as Pfcrt, Pfmdr1, Pfmrp, and Pfnhe-1. FQ was highly active against CQ-resistant parasites or in parasites with reduced susceptibility to QN, MDAQ, or MQ.
View Article and Find Full Text PDFPlasmodium falciparum is one of the most lethal parasite responsible for human malaria. Until now, the only one solution to counter malaria is the use of antimalarial drugs. Unfortunately, the extensively use of drugs, such as quinolines (i.
View Article and Find Full Text PDFThe development and spread of resistance to antimalarial drugs poses a severe and increasing public health threat. Failures of prophylaxis or treatment with quinolines, hydroxynaphthoquinones, sesquiterpene lactones, antifolate drugs and sulfamides are involved in a return malaria-related morbidity and mortality. Resistance is associated with a decrease in accumulation of drugs into the vacuole, which results from a reduced uptake of the drug, an increased efflux or a combination of both.
View Article and Find Full Text PDFThe chemosusceptibility and genetic polymorphism of Plasmodium falciparum populations from 48 patients hospitalized for malaria at the Hospital Principal in Dakar, Senegal were investigated during the 2002 malaria transmission season. Sixty-two percent of the isolates collected were from patients with severe malaria and 38% were from patients with mild malaria. In vitro activities of chloroquine, quinine, cycloguanil, atovaquone, mefloquine, halofantrine, and artesunate were evaluated.
View Article and Find Full Text PDFMass spectrometric methods, including matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI-MS), and nanospray ionisation/hybrid quadrupole time-of-flight mass spectrometry (nanoESI-QqTOFMS), were applied to characterize by mass fingerprinting the venom of the French Guyanese tarantula Theraphosa leblondi. Of these techniques direct nanoESI-QqTOFMS, which allowed the detection of 65 protonated molecules with high mass accuracy, appeared to give the best results. Three major peptides, TlTx1, TlTx2 and TlTx3, were sequenced using a combination of nanoESI-MS/MS and enzyme digestion/MS and MS/MS experiments.
View Article and Find Full Text PDF