Inter- and intraspecific competition is most important during the immature life stage for many species of interest, such as multiple coexisting mosquito species that act as vectors of diseases. Mortality caused by competition that occurs during maturation is explicitly modelled in some alternative formulations of the Lotka-Volterra competition model. We generalise this approach by using a distributed delay for maturation time.
View Article and Find Full Text PDFThe Fisher-Kolmogorov-Petrovsky-Piskunov (KPP) model, and generalizations thereof, involves simple reaction-diffusion equations for biological invasion that assume individuals in the population undergo linear diffusion with diffusivity $D$, and logistic proliferation with rate $\lambda $. For the Fisher-KPP model, biologically relevant initial conditions lead to long-time travelling wave solutions that move with speed $c=2\sqrt {\lambda D}$. Despite these attractive features, there are several biological limitations of travelling wave solutions of the Fisher-KPP model.
View Article and Find Full Text PDFWe consider a continuum mathematical model of biological tissue formation inspired by recent experiments describing thin tissue growth in 3D-printed bioscaffolds. The continuum model, which we call the substrate model, involves a partial differential equation describing the density of tissue, [Formula: see text] that is coupled to the concentration of an immobile extracellular substrate, [Formula: see text]. Cell migration is modelled with a nonlinear diffusion term, where the diffusive flux is proportional to [Formula: see text], while a logistic growth term models cell proliferation.
View Article and Find Full Text PDFBiological invasion, whereby populations of motile and proliferative individuals lead to moving fronts that invade vacant regions, is routinely studied using partial differential equation models based upon the classical Fisher-KPP equation. While the Fisher-KPP model and extensions have been successfully used to model a range of invasive phenomena, including ecological and cellular invasion, an often-overlooked limitation of the Fisher-KPP model is that it cannot be used to model biological recession where the spatial extent of the population decreases with time. In this work, we study the Fisher-Stefan model, which is a generalisation of the Fisher-KPP model obtained by reformulating the Fisher-KPP model as a moving boundary problem.
View Article and Find Full Text PDFThe Fisher-Kolmogorov-Petrovsky-Piskunov model, also known as the Fisher-KPP model, supports travelling wave solutions that are successfully used to model numerous invasive phenomena with applications in biology, ecology and combustion theory. However, there are certain phenomena that the Fisher-KPP model cannot replicate, such as the extinction of invasive populations. The Fisher-Stefan model is an adaptation of the Fisher-KPP model to include a moving boundary whose evolution is governed by a Stefan condition.
View Article and Find Full Text PDF