How much data are needed to obtain useful parameter estimations from a computational model? The standard approach to address this question is to carry out a goodness-of-recovery study. Here, the correlation between individual-participant true and estimated parameter values determines when a sample size is large enough. However, depending on one's research question, this approach may be suboptimal, potentially leading to sample sizes that are either too small (underpowered) or too large (overcostly or unfeasible).
View Article and Find Full Text PDF