Publications by authors named "Mauborgne A"

Opioids are a mainstay of pain management but can induce unwanted effects, including analgesic tolerance and paradoxical hyperalgesia, either of which leads to increased pain. Clinically, however, the relationship between these two phenomena remains elusive. By evaluating changes in mechanical nociceptive threshold in male rats, we found that in contrast to a purely analgesic control response to a single subcutaneous administration of fentanyl (25 μg/kg), in rats subjected to inflammatory pain 2 weeks previously (Day), the same test dose (D) induced a bi-phasic response: initial decreased analgesia (tolerance) followed by hyperalgesia lasting several hours.

View Article and Find Full Text PDF

We explored the molecular and behavioral effects of a perineural Lipopolysaccharide (LPS)-mediated inflammatory priming on the development and maintenance of painful post-traumatic trigeminal neuropathy (PPTTN) following infra-orbital nerve chronic constriction injury (CCI-IoN) in rats. Rats were pretreated with repetitive perineural injections in the vicinity of the IoN of either LPS or vehicle (Vhcl) before being submitted to CCI-IoN. Orofacial pain-like behaviors (response to Von Frey Filament testing and spontaneous isolated face grooming) were measured during the period of LPS injections (three weeks) and following CCI-IoN surgery (two weeks).

View Article and Find Full Text PDF

Background: Mycolactone is a macrolide produced by the skin pathogen Mycobacterium ulcerans, with cytotoxic, analgesic and immunomodulatory properties. The latter were recently shown to result from mycolactone blocking the Sec61-dependent production of pro-inflammatory mediators by immune cells. Here we investigated whether mycolactone similarly affects the inflammatory responses of the nervous cell subsets involved in pain perception, transmission and maintenance.

View Article and Find Full Text PDF

Background: Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway.

View Article and Find Full Text PDF

Whereas neurovascular interactions in spinal neuropathic pain models have been well characterized, little attention has been given to such neurovascular interactions in orofacial neuropathic pain models. This study investigated in male Sprague-Dawley rats the vascular changes following chronic constriction injury (CCI) of the infraorbital nerve (IoN), a broadly validated preclinical model of orofacial neuropathic pain. Following IoN-CCI, an early downregulation of tight junction proteins Claudin-1 and Claudin-5 was observed within the endoneurium and perineurium, associated with increased local accumulation of sodium fluorescein (NaFlu) within the IoN parenchyma, as compared with sham animals.

View Article and Find Full Text PDF

Changes in the nerve's microenvironment and local inflammation resulting from peripheral nerve injury participate in nerve sensitization and neuropathic pain development. Taking part in these early changes, disruption of the blood-nerve barrier (BNB) allows for infiltration of immunocytes and promotes the neuroinflammation. However, molecular mechanisms engaged in vascular endothelial cells (VEC) dysfunction and BNB alterations remain unclear.

View Article and Find Full Text PDF

After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons.

View Article and Find Full Text PDF

Background: Chemokine (C-C motif) ligand 2 (CCL2) participates in different mechanisms contributing to the spinal cord inflammation and pain development after sciatic nerve injury. Recent data also support its role in orofacial thermal hypersensitivity, although its implication in different phases of trigeminal pain emergence is unclear. We assessed the importance of CCL2 signalling in biochemical and behavioural alterations during the early and late stages following chronic constriction injury of infraorbital nerve (ION-CCI), a model of peripheral traumatic trigeminal pain.

View Article and Find Full Text PDF

CCL2 chemokine and its receptor CCR2 may contribute to neuropathic pain development. We tested the hypothesis that injury to peripheral nerves triggers CCL2 release from afferents in the dorsal horn spinal cord (DHSC), leading to pronociceptive effects, involving the production of proinflammatory factors, in particular. Consistent with the release of CCL2 from primary afferents, electron microscopy showed the CCL2 immunoreactivity in glomerular boutons and secretory vesicles in the DHSC of naive rats.

View Article and Find Full Text PDF

Chronic stressful events induce biochemical, physiological and psychological changes, resulting in stress-related neuropsychiatric disorders, such as anxiety or depression. Using repeated social defeat as a stressful event model, we show that this preclinical paradigm induces a transient increase in the expression of the genes encoding the pro-inflammatory molecules iNOS and COX-2. We provide the first demonstration that chronic stress affects spinal plasticity through a mechanism involving local neuroinflammation.

View Article and Find Full Text PDF

Neuropathic pain after peripheral nerve injury, associated with local neuroinflammation in the spinal cord, is a severe incapacitating condition with which clinical treatment remains challenging. Inflammatory molecules signal through various intracellular transduction pathways, activation of which may amplify and cause spreading of the inflammatory response. We showed recently that spinal nerve lesion leads to rapid activation of Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signal transduction pathway in dorsal spinal cord microglia in relation with enhanced levels of spinal interleukin-6 (IL-6) protein.

View Article and Find Full Text PDF

Background: The functional significance of proenkephalin systems in processing pain remains an open question and indeed is puzzling. For example, a noxious mechanical stimulus does not alter the release of Met-enkephalin-like material (MELM) from segments of the spinal cord related to the stimulated area of the body, but does increase its release from other segments.

Methodology/principal Findings: Here we show that, in the rat, a noxious mechanical stimulus applied to either the right or the left hind paw elicits a marked increase of MELM release during perifusion of either the whole spinal cord or the cervico-trigeminal area.

View Article and Find Full Text PDF

Responses resulting from injury to the trigeminal nerve exhibit differences compared with those caused by lesion of other peripheral nerves. With the aim of elucidating the physiopathological mechanisms underlying cephalic versus extracephalic neuropathic pain, we determined the time course expression of proinflammatory cytokines interleukin-6 (IL-6) and IL-1beta, neuronal injury (ATF3), macrophage/microglial (OX-42), and satellite cells/astrocyte (GFAP) markers in central and ganglion tissues in rats that underwent unilateral chronic constriction injury (CCI) to either infraorbital nerve (IoN) (cephalic area) or sciatic nerve (SN) (extracephalic area). Whereas CCI induced microglial activation in both models, we observed a concomitant upregulation of IL-6 and ATF3 in the ipsilateral dorsal horn of the lumbar cord in SN-CCI rats but not in the ipsilateral spinal nucleus of the trigeminal nerve (Sp5c) in IoN-CCI rats.

View Article and Find Full Text PDF

Peripheral nerve lesion leads to the production of interleukin 6 (IL-6)-related neuropoietic cytokines involved in nerve protection and regeneration. This family of cytokines mainly signal through the signal transducer and activator of transcription (STAT) pathway that is locally activated in injured nerves. IL-6 is also involved in pain that frequently arises from peripheral nerve lesion.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists need to better understand how a substance called MCP-1/CCL2 makes pain worse to help treat chronic pain better.
  • The study shows that MCP-1/CCL2 affects nerves responsible for pain and can increase sensitivity to pain in healthy rats.
  • Blocking the action of MCP-1/CCL2 with a special drug could be a useful way to reduce pain in the future.
View Article and Find Full Text PDF

Activated glial cells in the dorsal spinal cord take an important part in the development of pain after peripheral nerve injury. Our understanding of mechanisms involved in functional changes of spinal glia remains incomplete. Excepting drugs that completely disrupt glial function, pharmacological studies fail to target glia and to modify locally its function in order to really discriminate the role of neuronal versus glial cells in chronic pain.

View Article and Find Full Text PDF

Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor.

View Article and Find Full Text PDF

Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor.

View Article and Find Full Text PDF

Trigeminal neuropathic pain represents a real challenge to therapy because commonly used drugs are devoid of real beneficial effect or patients frequently become intolerant or refractory to some of these compounds. In a rat model of trigeminal neuropathic pain, which shares numerous similarities with human trigeminal neuralgia and trigeminal neuropathic pain, we used a genomic herpes simplex virus-derived vector (HSVLatEnk) to examine the possible effect of a local overproduction of proenkephalin A (PA) targeted to the trigeminal primary sensory neurons. Unilateral peripheral inoculation of recombinant vectors on the vibrissal pad territory resulted in an about ninefold increase in proenkephalin A mRNA levels in trigeminal ganglion ipsilateral to the infected side.

View Article and Find Full Text PDF

Although clinically well controlled at the metabolic level, type I diabetes resulting from an insufficient insulin secretion remains the cause of severe complications. In particular, diabetes can be associated with neuropathic pain which fails to be treated by classical analgesics. In this study, we investigated the efficacy of a novel non opioid analgesic, cizolirtine, to reduce mechanical hyperalgesia associated with streptozotocin (STZ)-induced diabetes, in the rat.

View Article and Find Full Text PDF

Intrathecal infusion of the neuropeptide FF analogue, [D-Tyr1, (NMe)Phe3]neuropeptide FF (1DMe; 0.1 microm-0.1 mm) in anaesthetized rats produced a concentration-dependent decrease in the spinal outflow of dynorphin A (1-8)-like material, which persisted for at least 90 min after treatment with 10 microm-0.

View Article and Find Full Text PDF

Although it is well established that adenosine exerts antinociceptive effects at the spinal level in various species including human, the mechanisms responsible for such effects are still a matter of debate. We presently investigated whether adenosine-induced antinociception might possibly be related to an inhibitory influence of this neuromodulator on the spinal release of neuropeptides implicated in the transfer and/or control of nociceptive signals. For this purpose, the K(+)-evoked overflow of substance P-, calcitonin gene-related peptide (CGRP)- and cholecystokinin-like materials was measured from slices of the dorsal half of the rat lumbar enlargement superfused with an artificial cerebrospinal fluid supplemented with increasing concentrations of various adenosine receptor ligands.

View Article and Find Full Text PDF

We assessed the possible influence of a neuropeptide FF analogue, 1DMe ([D-Tyr(1),(NMe)Phe(3)]neuropeptide FF), on the inhibitory action of endogenous and exogenous partial differential-opioid receptor agonists on K(+)-evoked [Met(5)]-enkephalin release from superfused rat spinal cord slices. 1DMe (0.1-10 microM) dose-dependently enhanced the increase in superfusate [Met(5)]-enkephalin content due to the peptidase inhibitors thiorphan (1 microM) and bestatin (20 microM), and prevented the reduction in [Met(5)]-enkephalin release due to stimulation of partial differential receptors by 1 microM deltorphin I.

View Article and Find Full Text PDF

Using the microdialysis technique, the present study investigated the effects of a noxious stimulation on the extracellular levels of met-enkephalin and (sulfated octapeptide) cholecystokinin-like materials in the nucleus accumbens of freely moving rats. Injection of 50 microl of 5% formalin into the forepaw produced pain-related behaviours associated with an immediate and sustained (for approximately 2 h) increase (+27%) in the outflow of met-enkephalin-like material within the nucleus accumbens. This treatment also progressively enhanced the local outflow of cholecystokinin-like material that reached 200%-250% of the basal level at the end of the experiment, i.

View Article and Find Full Text PDF

Although previous studies have established that cizolirtine (5-([(N,N-dimethylaminoethoxy)phenyl]methyl)-1-methyl-1H-pyrazol citrate) is a potent analgesic in rodents, its mechanism(s) of action remain(s) unclear. In vitro and in vivo approaches were used to assess whether cizolirtine could affect the spinal release of two pain-related neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), in rats. Cizolirtine significantly reduced the K(+)-evoked overflow of both the SP-like material (SPLM; -25% at 0.

View Article and Find Full Text PDF