The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Pediatric dilated cardiomyopathy (DCM) is a rare heart muscle disorder leading to the enlargement of all chambers and systolic dysfunction. We identified a novel de novo variant, c.88A>G (p.
View Article and Find Full Text PDFIn this study, we investigated formation of the complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and actin and the possibility of nitrosyl group transfer between GAPDH and actin. A complex of GAPDH with beta-actin was isolated from lysates of HEK293T cells using immunoprecipitation with antibodies against GAPDH or against beta-actin. The treatment of the cells with HO or NO donor did not affect the formation of the complex.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2).
View Article and Find Full Text PDFThe actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm).
View Article and Find Full Text PDFCardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied.
View Article and Find Full Text PDFCardiac myosin binding protein-C (cMyBP-C) located in the C-zone of myocyte sarcomere is involved in the regulation of myocardial contraction. Its N-terminal domains C0, C1, C2, and the m-motif between C1 and C2 can bind to the myosin head and actin of the thin filament and affect the characteristics of their interaction. Measurements using an optical trap showed that the C0-C2 fragment of cMyBP-C increases the interaction time of cardiac myosin with the actin filament, while in an in vitro motility assay, it dose-dependently reduces the sliding velocity of actin filaments.
View Article and Find Full Text PDFNeurofilaments are neuron-specific proteins that belong to the intermediate filament (IFs) protein family, with the neurofilament light chain protein (NFL) being the most abundant. The IFs structure typically includes a central coiled-coil rod domain comprised of coils 1A, 1B, and 2, separated by linker regions. The thermal stability of the IF molecule plays a crucial role in its ability for self-association.
View Article and Find Full Text PDFTropomyosin (Tpm) is a regulatory actin-binding protein involved in Ca activation of contraction of striated muscle. In human slow skeletal muscles, two distinct Tpm isoforms, γ and β, are present. They interact to form three types of dimeric Tpm molecules: γγ-homodimers, γβ-heterodimers, or ββ-homodimers, and a majority of the molecules are present as γβ-Tpm heterodimers.
View Article and Find Full Text PDFTropomyosin (Tpm) is one of the most important partners of actin filament that largely determines its properties. In animal organisms, there are different isoforms of Tpm, which are believed to be involved in the regulation of various cellular functions. However, molecular mechanisms by which various Tpm cytoplasmic regulate of the functioning of actin filaments are still poorly understood.
View Article and Find Full Text PDFWe characterized a novel genetic variant c.292G > A (p.E98K) in the gene encoding cardiac tropomyosin 1.
View Article and Find Full Text PDFEffects of E90K, N98S, and A149V mutations in the light chain of neurofilaments (NFL) on the structure and thermal denaturation of the NFL molecule were investigated. By using circular dichroism spectroscopy, it was shown that these mutations did not lead to the changes in α-helical structure of NFL, but they caused noticeable effects on the stability of the molecule. We also identified calorimetric domains in the NFL structure by using differential scanning calorimetry.
View Article and Find Full Text PDFIn the myocardium, the gene expresses two isoforms of tropomyosin (Tpm), alpha (αTpm; Tpm 1.1) and kappa (κTpm; Tpm 1.2).
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM), caused by mutations in thin filament proteins, manifests as moderate cardiac hypertrophy and is associated with sudden cardiac death (SCD). We identified a new de novo variant, c.656A>T (p.
View Article and Find Full Text PDFTropomyosin (Tpm) mutations cause inherited cardiac diseases such as hypertrophic and dilated cardiomyopathies. We applied various approaches to investigate the role of cardiac troponin (Tn) and especially the troponin T (TnT) in the pathogenic effects of Tpm cardiomyopathy-associated mutations M8R, K15N, A277V, M281T, and I284V located in the overlap junction of neighboring Tpm dimers. Using co-sedimentation assay and viscosity measurements, we showed that TnT1 (fragment of TnT) stabilizes the overlap junction of Tpm WT and all Tpm mutants studied except Tpm M8R.
View Article and Find Full Text PDFThe effects of cardiomyopathic mutations E56G, M149V, and E177G in the MYL3 gene encoding essential light chain of human ventricular myosin (ELCv), on the functional properties of cardiac myosin and its isolated head (myosin subfragment 1, S1) were investigated. Only the M149V mutation upregulated the actin-activated ATPase activity of S1. All mutations significantly increased the Ca2+-sensitivity of the sliding velocity of thin filaments on the surface with immobilized myosin in the in vitro motility assay, while mutations E56G and M149V (but not E177G) reduced the sliding velocity of regulated thin filaments and F-actin filaments almost twice.
View Article and Find Full Text PDFThe work aimed to investigate how the phosphorylation of the myosin essential light chain of fast skeletal myosin (LC1) affects the functional properties of the myosin molecule. Using mass-spectrometry, we revealed phosphorylated peptides of LC1 in myosin from different fast skeletal muscles. Mutations S193D and T65D that mimic natural phosphorylation of LC1 were produced, and their effects on functional properties of the entire myosin molecule and isolated myosin head (S1) were studied.
View Article and Find Full Text PDFThe molecular mechanisms of pathogenesis of atrial myopathy associated with hypertrophic (HCM) and dilated (DCM) mutations of sarcomeric proteins are still poorly understood. For this, one needs to investigate the effects of the mutations on actin-myosin interaction in the atria separately from ventricles. We compared the impact of the HCM and DCM mutations of tropomyosin (Tpm) on the calcium regulation of the thin filament interaction with atrial and ventricular myosin using an in vitro motility assay.
View Article and Find Full Text PDFTropomyosin (Tpm) is an actin-associated protein and key regulator of actin filament structure and dynamics in muscle and non-muscle cells where it participates in many vital processes. Human non-muscle cells produce many Tpm isoforms; however, little is known yet about their structural and functional properties. In the present work, we have applied various methods to investigate the properties of five low molecular weight Tpm isoforms (Tpm3.
View Article and Find Full Text PDFTropomyosin (Tpm) is one of the major protein partners of actin. Tpm molecules are -helical coiled-coil protein dimers forming a continuous head-to-tail polymer along the actin filament. Human cells produce a large number of Tpm isoforms that are thought to play a significant role in determining actin cytoskeletal functions.
View Article and Find Full Text PDFPhosphorylation of α-tropomyosin (Tpm1.1), a predominant Tpm isoform in the myocardium, is one of the regulatory mechanisms of the heart contractility. The Tpm 1.
View Article and Find Full Text PDFTropomyosin (Tpm) is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Numerous point mutations in the TPM3 gene encoding Tpm of slow skeletal muscles (Tpm 3.12 or γ-Tpm) are associated with the genesis of various congenital myopathies.
View Article and Find Full Text PDFTropomyosin (Tpm) is one of the major actin-binding proteins that play a crucial role in the regulation of muscle contraction. The flexibility of the Tpm molecule is believed to be vital for its functioning, although its role and significance are under discussion. We choose two sites of the Tpm molecule that presumably have high flexibility and stabilized them with the A134L or E218L substitutions.
View Article and Find Full Text PDFWe applied various methods to investigate how mutations S283D and S61D that mimic phosphorylation of tropomyosin (Tpm) affect structural and functional properties of cardiac Tpm carrying cardiomyopathy-associated mutations in different parts of its molecule. Using differential scanning calorimetry and molecular dynamics, we have shown that the S61D mutation (but not the S283 mutation) causes significant destabilization of the N-terminal part of the Tpm molecule independently of the absence or presence of cardiomyopathy-associated mutations. Our results obtained by cosedimentation of Tpm with F-actin demonstrated that both S283D and S61D mutations can reduce or even eliminate undesirable changes in Tpm affinity for F-actin caused by some cardiomyopathy-associated mutations.
View Article and Find Full Text PDFSeveral congenital myopathies of slow skeletal muscles are associated with mutations in the tropomyosin (Tpm) TPM3 gene. Tropomyosin is an actin-binding protein that plays a crucial role in the regulation of muscle contraction. Two Tpm isoforms, γ (Tpm3.
View Article and Find Full Text PDF