Background: The availability of the genomes of two archaic humans, Neanderthal and Denisovan, and that of modern humans provides researchers an opportunity to investigate genetic differences between these three subspecies on a genome-wide scale. Here we describe an algorithm that predicts statistically significant motifs based on the difference between a given motif's actual and expected distributions. The algorithm was previously applied to plants but was modified for this work.
View Article and Find Full Text PDFdepends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages.
View Article and Find Full Text PDFWe present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression.
View Article and Find Full Text PDFWe herein present the National NeuroAIDS Tissue Consortium-Data Coordinating Center (NNTC-DCC) database, which is the only available database for neuroAIDS studies that contains data in an integrated, standardized form. This database has been created in conjunction with the NNTC, which provides human tissue and biofluid samples to individual researchers to conduct studies focused on neuroAIDS. The database contains experimental datasets from 1206 subjects for the following categories (which are further broken down into subcategories): gene expression, genotype, proteins, endo-exo-chemicals, morphometrics and other (miscellaneous) data.
View Article and Find Full Text PDFA CO(2)-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) CO(2) concentrations. In this study, we used replicated deep mRNA sequencing and regulatory network reconstruction to capture a remarkable scope of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO(2) (≤100 ppm). CCM induction 30 to 180 min post-CO(2) deprivation coincides with statistically significant changes in the expression of an astonishing 38% (5884) of the 15,501 nonoverlapping C.
View Article and Find Full Text PDF