Publications by authors named "Matute D"

A powerful but poorly understood analysis in ecology and evolutionary biology is the comparative study of lineage-pair traits. "Lineage-pair traits" are characters like 'diet niche overlap' and 'strength of reproductive isolation' that are defined for pairs of lineages instead of individual taxa. Comparative tests for causal relationships among such variables have led to groundbreaking insights in several classic studies, but the statistical validity of these analyses has been unclear due to the complex dependency structure of the data.

View Article and Find Full Text PDF

Blastomyces spp. fungi, the causal agent of blastomycosis, are common in North America but do occur in other areas of the world. The most prevalent pathogen in the genus is B.

View Article and Find Full Text PDF

Behavioral mating choices and mating success are important factors in the development of reproductive isolation during speciation. Environmental conditions, especially temperature, can affect these key traits. Environmental conditions can vary across, and frequently delimit species' geographic ranges.

View Article and Find Full Text PDF

Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D.

View Article and Find Full Text PDF
Article Synopsis
  • Blastomyces is a fungal pathogen affecting people globally, with its evolutionary diversity still largely unknown.
  • Researchers sequenced genomes from 99 Blastomyces isolates to analyze their phylogenetic relationships, discovering inconsistencies in tree construction across different methods.
  • The study highlights the importance of collecting more samples to better understand the genetic variation and evolutionary processes of these significant fungi.
View Article and Find Full Text PDF

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.

View Article and Find Full Text PDF

Background: Arthropods vector a multitude of human disease-causing organisms, and their geographic ranges are shifting rapidly in response to changing climatic conditions. This is, in turn, altering the landscape of disease risk for human populations that are brought into novel contact with the vectors and the diseases they carry. Sand flies in the genera Lutzomyia and Pintomyia are vectors of serious disease-causing agents such as Leishmania (the etiological agent of leishmaniasis) and may be expanding their range in the face of climate change.

View Article and Find Full Text PDF

Histoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. , the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed.

View Article and Find Full Text PDF

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, is a dimorphic fungus commonly found in the soil where it grows as mycelia.

View Article and Find Full Text PDF

is the main vector species of yellow fever, dengue, zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of into the Americas its impact on genomic diversity.

View Article and Find Full Text PDF

Histoplasmosis is an endemic mycosis in North America frequently reported along the Ohio and Mississippi River Valleys, although autochthonous cases occur in non-endemic areas. In the United States, the disease is provoked by two genetically distinct clades of , (Nam1) and (Nam2). To bridge the molecular epidemiological gap, we genotyped 93 isolates (62 novel genomes) including clinical, environmental, and veterinarian samples from a broader geographical range by whole-genome sequencing, followed by evolutionary and species niche modelling analyses.

View Article and Find Full Text PDF

Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, , is a dimorphic fungus commonly found in the soil where it grows as mycelia.

View Article and Find Full Text PDF

The mosquito Aedes albopictus (Diptera: Culicidae) is a vector species of the causal agents of Dengue, yellow fever, and Zika among other diseases pathogens. The species originated in Southeast Asia and has spread widely and rapidly in the last century. The species has been reported in localities from the Gulf of Guinea since the early 2000s, but systematic sampling has been scant.

View Article and Find Full Text PDF

Identifying the current geographic range of disease vectors is a critical first step towards determining effective mechanisms for controlling and potentially eradicating them. This is particularly true given that historical vector ranges may expand due to changing climates and human activity. The Aedes subgenus Stegomyia contains over 100 species, and among them, Ae.

View Article and Find Full Text PDF

Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic species , where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males.

View Article and Find Full Text PDF

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab.

View Article and Find Full Text PDF

Identifying the current geographic range of disease vectors is a critical first step towards determining effective mechanisms for controlling and potentially eradicating them. This is particularly true given that historical vector ranges may expand due to changing climates and human activity. The subgenus contains over 100 species, and among them, and mosquitoes represent the largest concern for public health, spreading dengue, chikungunya, and Zika viruses.

View Article and Find Full Text PDF

The genomic era has made clear that introgression, or the movement of genetic material between species, is a common feature of evolution. Examples of both adaptive and deleterious introgression exist in a variety of systems. What is unclear is how the fitness of an introgressing haplotype changes as species diverge or as the size of the introgressing haplotype changes.

View Article and Find Full Text PDF

Phenotypic traits are expected to be more similar among closely related species than among species that diverged long ago (all else being equal). This pattern, known as phylogenetic niche conservatism, also applies to traits that are important to determine the niche of species. To test this hypothesis on ecological niches, we analysed isotopic data from 254 museum study skins from 12 of the 16 species of the bird genus Cinclodes and measured stable isotope ratios for four different elements: carbon, nitrogen, hydrogen and oxygen.

View Article and Find Full Text PDF

Aedes aegypti vectors the pathogens that cause dengue, yellow fever, Zika virus, and chikungunya and is a serious threat to public health in tropical regions. Decades of work has illuminated many aspects of Ae. aegypti's biology and global population structure and has identified insecticide resistance genes; however, the size and repetitive nature of the Ae.

View Article and Find Full Text PDF

With the rise of affordable next-generation sequencing technology, introgression-or the exchange of genetic materials between taxa-has become widely perceived to be a ubiquitous phenomenon in nature. Although this claim is supported by several keystone studies, no thorough assessment of the frequency of introgression across eukaryotes in nature has been performed to date. In this manuscript, we aim to address this knowledge gap by examining patterns of introgression across eukaryotes.

View Article and Find Full Text PDF

Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa.

View Article and Find Full Text PDF

Feline-transmitted sporotrichosis has garnered attention due to the recent high incidence and the lack of efficient control in the epicenter of the epidemic, Rio de Janeiro, Brazil. Sporothrix brasiliensis is the major pathogen involved in feline-to-human sporotrichosis in Brazil and displays more virulent genotypes than the closely related species S. schenckii.

View Article and Find Full Text PDF

Phylogenetic niche conservatism is a pattern in which closely related species are more similar than distant relatives in their niche-related traits. Species in the family Psychodidae show notable diversity in climatic niche, and present an opportunity to test for phylogenetic niche conservatism, which is as yet rarely studied in insects. Some species (in the subfamily Phlebotominae) transmit Leishmania parasites, responsible for the disease leishmaniasis, and their geographic range has been systematically characterized.

View Article and Find Full Text PDF