The APOE4 allele is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). While APOE4 is strongly associated with amyloid-beta (Aβ), its relationship with tau accumulation is less understood. Studies evaluating the role of APOE4 on tau accumulation showed conflicting results, particularly regarding the independence of these associations from Aβ load.
View Article and Find Full Text PDFBackground: The success of selecting high risk or early-stage Alzheimer's disease individuals for the delivery of clinical trials depends on the design and the appropriate recruitment of participants. Polygenic risk scores (PRS) show potential for identifying individuals at risk for Alzheimer's disease (AD). Our study comprehensively examines AD PRS utility using various methods and models.
View Article and Find Full Text PDFEvidence from neuropathological cohorts indicates that a CSF α-synuclein (α-syn) seed amplification assay (SAA) may provide quantitative kinetic parameters correlating with α-syn pathology burden in patients with Lewy body disease (LBD). Studies are needed to assess their longitudinal trend during the pre-symptomatic and clinical disease phases and their correlation with measures of disease progression. We aimed to assess the baseline α-syn CSF SAA kinetic parameters, their longitudinal variations and associations with clinical outcomes in a cohort of longitudinally repeatedly sampled Lewy Body disease patients, including clinically unimpaired (asymptomatic LBD) and neurologically impaired individuals.
View Article and Find Full Text PDFPlasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by brain aggregation of β-amyloid (Aβ) peptides and phosphorylated tau (P-tau) proteins. Extracellular vesicles (EVs) can be isolated and studied for potential roles in disease. While several studies have tested plasma-derived EVs in AD, few have analyzed EVs from cerebrospinal fluid (CSF), which are potentially more closely related to brain changes.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD.
View Article and Find Full Text PDFIdentifying concomitant Lewy body (LB) pathology through seed amplification assays (SAA) might enhance the diagnostic and prognostic work-up of Alzheimer's disease (AD) in clinical practice and trials. This study examined whether LB pathology exacerbates AD-related disease progression in 795 cognitively impaired individuals (Mild Cognitive Impairment and dementia) from the longitudinal multi-center observational ADNI cohort. Participants were on average 75 years of age (SD = 7.
View Article and Find Full Text PDFIntroduction: We examined the relations of misfolded alpha synuclein (α-synuclein) with Alzheimer's disease (AD) biomarkers in two large independent cohorts.
Methods: We included Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably Two (BioFINDER-2) and Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (n = 2315, cognitively unimpaired, mild cognitive impairment, AD dementia) who had cross-sectional cerebrospinal fluid (CSF) α-synuclein measurement from seed-amplification assay as well as cross-sectional and longitudinal amyloid beta (Aβ) and tau levels (measured in CSF and/or by positron emission tomography). All analyses were adjusted for age, sex, and cognitive status.
Proteomics can shed light on the dynamic and multifaceted alterations in neurodegenerative disorders like Alzheimer's disease (AD). Combining radioligands measuring β-amyloid (Aβ) plaques and tau tangles with cerebrospinal fluid proteomics, we uncover molecular events mirroring different stages of AD pathology in living humans. We found 127 differentially abundant proteins (DAPs) across the AD spectrum.
View Article and Find Full Text PDFImportance: The lack of an in vivo measure for α-synuclein (α-syn) pathology until recently has limited thorough characterization of its brain atrophy pattern, especially during early disease stages.
Objective: To assess the association of state-of-the-art cerebrospinal fluid (CSF) seed amplification assays (SAA) α-syn positivity (SAA α-syn+) with magnetic resonance imaging (MRI) structural measures, across the continuum from clinically unimpaired (CU) to cognitively impaired (CI) individuals, in 3 independent cohorts, and separately in CU and CI individuals, the latter reflecting a memory clinic population.
Design, Setting, And Participants: Cross-sectional data were used from the Swedish BioFINDER-2 study (inclusion, 2017-2023) as the discovery cohort and the Swedish BioFINDER-1 study (inclusion, 2007-2015) and Alzheimer's Disease Neuroimaging Initiative (ADNI; inclusion 2005-2022) as replication cohorts.
This scientific commentary refers to ‘Towards cascading genetic risk in Alzheimer’s disease’ by Altmann (https://doi.org/10.1093/brain/awae176).
View Article and Find Full Text PDFPlasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarkers for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD.
View Article and Find Full Text PDFThe pathophysiology underlying various manifestations of cerebral small vessel disease (cSVD) remains obscure. Using cerebrospinal fluid proximity extension assays and co-expression network analysis of 2,943 proteins, we found common and distinct proteomic signatures between white matter lesions (WML), microbleeds and infarcts measured in 856 living patients, and validated WML-associated proteins in three additional datasets. Proteins indicative of extracellular matrix dysregulation and vascular remodeling, including ELN, POSTN, CCN2 and MMP12 were elevated across all cSVD manifestations, with MMP12 emerging as an early cSVD indicator.
View Article and Find Full Text PDFImportance: An accurate prognosis is especially pertinent in mild cognitive impairment (MCI), when individuals experience considerable uncertainty about future progression.
Objective: To evaluate the prognostic value of tau positron emission tomography (PET) to predict clinical progression from MCI to dementia.
Design, Setting, And Participants: This was a multicenter cohort study with external validation and a mean (SD) follow-up of 2.
Tau positron emission tomography (PET) is a reliable neuroimaging technique for assessing regional load of tau pathology in the brain, commonly used in Alzheimer's disease (AD) research and clinical trials. However, its routine clinical use is limited by cost and accessibility barriers. Here we explore using machine learning (ML) models to predict clinically useful tau-PET composites from low-cost and non-invasive features, e.
View Article and Find Full Text PDFBackground: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking.
Methods: BioFINDER-2 participants with memory impairment, abnormal amyloid-β status and tau-PET were included.
Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD).
View Article and Find Full Text PDF