Publications by authors named "Mattrey R"

Activatable microbubble contrast agents for contrast-enhanced ultrasound have a potential role for measuring physiologic and pathologic states in deep tissues, including tumor acidosis. In this study, we describe a novel observation of increased harmonic oscillation of phosphatidylcholine microbubbles (PC-MBs) in response to lower ambient pH using a clinical ultrasound scanner. MB echogenicity and nonlinear echoes were monitored at neutral and acidic pH using B-mode and Cadence contrast pulse sequencing (CPS), a harmonic imaging technique at 7.

View Article and Find Full Text PDF

Objective: We have previously determined that direct formulation of a phospholipid-based perfluorobutane (PFB) emulsion using high-pressure homogenization produces monodispersed PFB nanodroplets (NDs) with relatively few non-PFB-filled NDs. In this article, we describe a simpler strategy to reproducibly formulate highly concentrated superheated PFB NDs using a probe sonicator, a more widely available tool.

Methods: Similar to the homogenization technique, sonicating at low power a solution of phospholipids with condensed PFB at -10°C consistently yields NDs with an encapsulation efficiency close to 100% and very few non-PFB-filled particles.

View Article and Find Full Text PDF

Background Contrast-enhanced (CE) US has been studied for use in the detection of residual viable hepatocellular carcinoma (HCC) after locoregional therapy, but multicenter data are lacking. Purpose To compare two-dimensional (2D) and three-dimensional (3D) CE US diagnostic performance with that of CE MRI or CT, the current clinical standard, in the detection of residual viable HCC after transarterial chemoembolization (TACE) in a prospective multicenter trial. Materials and Methods Participants aged at least 21 years with US-visible HCC scheduled for TACE were consecutively enrolled at one of three participating academic medical centers from May 2016 to March 2022.

View Article and Find Full Text PDF

Activating patients' immune cells, either by reengineering them or treating them with bioactive molecules, has been a breakthrough in the field of immunotherapy and has revolutionized treatment, especially against cancer. As immune cells naturally home to tumors or injured tissues, labeling such cells holds promise for non-invasive tracking and biologic manipulation. Our study demonstrates that macrophages loaded with extremely low boiling point perfluorocarbon nanodroplets not only survive ultrasound-induced phase change but also maintain their phagocytic function.

View Article and Find Full Text PDF

The cytosolic innate immune sensor cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is crucial for priming adaptive antitumour immunity through antigen-presenting cells (APCs). Natural agonists, such as cyclic dinucleotides (CDNs), activate the cGAS-STING pathway, but their clinical translation is impeded by poor cytosolic entry and serum stability, low specificity and rapid tissue clearance. Here we developed an ultrasound (US)-guided cancer immunotherapy platform using nanocomplexes composed of 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) electrostatically bound to biocompatible branched cationic biopolymers that are conjugated onto APC-targeting microbubbles (MBs).

View Article and Find Full Text PDF

Objective: Breast cancer is the most frequent type of cancer among women. This multi-center study assessed the ability of 3D contrast-enhanced ultrasound to characterize suspicious breast lesions using clinical assessments and quantitative parameters.

Methods: Women with suspicious breast lesions scheduled for biopsy were enrolled in this prospective, study.

View Article and Find Full Text PDF

Enzymes are biological catalysts that have many potential industrial and biomedical applications. However, the widespread use of enzymes in the industry has been limited by their instability and poor recovery. In biomedical applications, systemic administration of enzymes has faced two main challenges: limited bioactivity mostly due to rapid degradation by proteases and immunogenic activity, since most enzymes are from nonhuman sources.

View Article and Find Full Text PDF

Microbubbles (MBs) are optimal ultrasound contrast agents because their unique acoustic response allows for exquisite sensitivity . This unique response is derived from MBs' elasticity that allows them to oscillate differently from surrounding tissues. While the main use of MBs in the clinic is for cardiac and perfusion imaging, imparting MBs with bioresponsive properties would expand their use to detect pathophysiologic changes.

View Article and Find Full Text PDF

While mammography has excellent sensitivity for the detection of breast lesions, its specificity is limited. Adjunct screening with ultrasound may partially alleviate this issue but also increases false positives, resulting in unnecessary biopsies. Our study investigated the use of Google AutoML Vision (Mountain View, California), a commercially available machine learning service, to both identify and characterize indeterminate breast lesions on ultrasound.

View Article and Find Full Text PDF

Phase-change perfluorocarbon microdroplets were introduced over 2 decades ago to occlude downstream vessels in vivo. Interest in perfluorocarbon nanodroplets has recently increased to enable extravascular targeting, to rescue the weak ultrasound signal of perfluorocarbon droplets by converting them to microbubbles and to improve ultrasound-based therapy. Despite great scientific interest and advances, applications of phase-change perfluorocarbon agents have not reached clinical testing because of efficacy and safety concerns, some of which remain unexplained.

View Article and Find Full Text PDF

Rationale And Objectives: Breast cancer is the leading type of cancer among women. Visualization and characterization of breast lesions based on vascularity kinetics was evaluated using three-dimensional (3D) contrast-enhanced ultrasound imaging in a clinical study.

Materials And Methods: Breast lesions (n = 219) were imaged using power Doppler imaging (PDI), 3D contrast-enhanced harmonic imaging (HI), and 3D contrast-enhanced subharmonic imaging (SHI) with a modified Logiq 9 ultrasound scanner using a 4D10L transducer.

View Article and Find Full Text PDF

Perfluorocarbon emulsion nanodroplets containing iron oxide nanoparticles (IONPs) within their inner perfluorohexane (PFH) core were prepared to investigate potential use as an acoustically activatable ultrasound contrast agent, with the hypothesis that incorporation of IONPs into the fluorous phase of a liquid perfluorocarbon emulsion would potentiate acoustic vaporization. IONPs with an oleic acid (OA) hydrophobic coating were synthesized through chemical co-precipitation. To suspend IONP in PFH, OA was exchanged with perfluorononanoic acid (PFNA) via ligand exchange to yield fluorophilic PFNA-coated IONPs (PFNA-IONPs).

View Article and Find Full Text PDF

Hydrogen peroxide (HO) plays a key role in neutrophil oxidative defense against infection. Catalase-containing silica nanoshells are nanoparticles that generate O microbubbles imaged with ultrasound in the presence of elevated HO. We aimed to determine whether ultrasound-detectable O microbubbles produced by catalase-containing silica nanoshells can determine whether fluid collections drained from patients are infected.

View Article and Find Full Text PDF

Stem cell therapies have demonstrated promising preclinical results, but very few applications have reached the clinic owing to safety and efficacy concerns. Translation would benefit greatly if stem cell survival, distribution and function could be assessed in vivo post-transplantation, particularly in patients. Advances in molecular imaging have led to extraordinary progress, with several strategies being deployed to understand the fate of stem cells in vivo using magnetic resonance, scintigraphy, PET, ultrasound and optical imaging.

View Article and Find Full Text PDF

Microbubble (MB) contrast agents have positively impacted the clinical ultrasound (US) community worldwide. Their use in molecular US imaging applications has been hindered by their limited distribution to the vascular space. Acoustic droplet vaporization (ADV) of nanoscale superheated perfluorocarbon nanodroplets (NDs) demonstrates potential as an extravascular contrast agent that could facilitate US-based molecular theranostic applications.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a common complication of obesity. Here, we have shown that activation of the IgG receptor FcγRIIB in endothelium by hyposialylated IgG plays an important role in obesity-induced insulin resistance. Despite becoming obese on a high-fat diet (HFD), mice lacking FcγRIIB globally or selectively in endothelium were protected from insulin resistance as a result of the preservation of insulin delivery to skeletal muscle and resulting maintenance of muscle glucose disposal.

View Article and Find Full Text PDF

Purpose To assess the performance of computer-aided diagnosis (CAD) systems and to determine the dominant ultrasonographic (US) features when classifying benign versus malignant focal liver lesions (FLLs) by using contrast material-enhanced US cine clips. Materials and Methods One hundred six US data sets in all subjects enrolled by three centers from a multicenter trial that included 54 malignant, 51 benign, and one indeterminate FLL were retrospectively analyzed. The 105 benign or malignant lesions were confirmed at histologic examination, contrast-enhanced computed tomography (CT), dynamic contrast-enhanced magnetic resonance (MR) imaging, and/or 6 or more months of clinical follow-up.

View Article and Find Full Text PDF

H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation.

View Article and Find Full Text PDF

Anti-angiogenic and vascular disrupting therapies rely on the dependence of tumors on new blood vessels to sustain tumor growth. We previously reported a potent vascular disrupting agent, a theranostic nanosystem consisting of a tumor vasculature-homing peptide (CGKRK) fused to a pro-apoptotic peptide [(KLAKLAK)] coated on iron oxide nanoparticles. This nanosystem showed promising therapeutic efficacy in glioblastoma (GBM) and breast cancer models.

View Article and Find Full Text PDF

Acute deep vein thrombosis (DVT) is the formation of a blood clot in the deep veins of the body that can lead to fatal pulmonary embolism. Acute DVT is difficult to distinguish from chronic DVT by ultrasound (US), the imaging modality of choice, and is therefore treated aggressively with anticoagulants, which can lead to internal bleeding. Here we demonstrate that conjugating perfluorobutane-filled (PFB-filled) microbubbles (MBs) with thrombin-sensitive activatable cell-penetrating peptides (ACPPs) could lead to the development of contrast agents that detect acute thrombosis with US imaging.

View Article and Find Full Text PDF
Article Synopsis
  • Microvascular processes are important in diseases like diabetes, and this study aimed to improve imaging techniques to visualize these changes using super-resolution ultrasound (SR-US).
  • Different sizes and concentrations of microbubble contrast agents were tested on mice, with various imaging parameters to optimize resolution in skeletal muscle microvascularity.
  • Results showed larger microbubbles and specific doses improved image detail, with specific settings (at least 20 fps and 8 minutes of imaging) yielding the best clarity in microvascular structures.
View Article and Find Full Text PDF

An on-demand long-lived ultrasound contrast agent that can be activated with single pulse stimulated imaging (SPSI) has been developed using hard shell liquid perfluoropentane filled silica 500-nm nanoparticles for tumor ultrasound imaging. SPSI was tested on LnCAP prostate tumor models in mice; tumor localization was observed after intravenous (IV) injection of the contrast agent. Consistent with enhanced permeability and retention, the silica nanoparticles displayed an extended imaging lifetime of 3.

View Article and Find Full Text PDF

Oxidative stress is a powerful tool that is critical to immune mediated responses in healthy individuals, yet additionally plays a crucial role in development of cancer, inflammatory pathologies, and tissue ischemia. Despite this, there remain relatively few molecular tools to study oxidative stress, particularly in living mammals. To develop an intravenously injectable probe capable of labeling sites of oxidative stress in vivo, 200 nm catalase synthetic hollow enzyme loaded nanospheres (catSHELS) are designed and fabricated using a versatile enzyme nanoencapsulation method.

View Article and Find Full Text PDF

In this paper, we describe a method for the stabilization of low-boiling point (low-bp) perfluorocarbons (PFCs) at physiological temperatures by an amphiphilic triblock copolymer which can emulsify PFCs and be cross-linked. After UV-induced thiol-ene cross-linking, the core of the PFC emulsion remains in liquid form even at temperatures exceeding their boiling points. Critically, the formulation permits vaporization at rarefactional pressures relevant for clinical ultrasound.

View Article and Find Full Text PDF

Silica nanoparticles are an emerging class of biomaterials which may be used as diagnostic and therapeutic tools for biomedical applications. In particular, hollow silica nanoshells are attractive due to their hollow core. Approximately 70% of a 500 nm nanoshell is hollow, therefore more particles can be administered on a mg/kg basis compared to solid nanoparticles.

View Article and Find Full Text PDF