The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.
View Article and Find Full Text PDFIn the degenerative eye disease retinitis pigmentosa (RP), protein misfolding leads to fatal consequences for cell metabolism and rod and cone cell survival. To stop disease progression, a therapeutic approach focuses on stabilizing inherited protein mutants of the G protein-coupled receptor (GPCR) rhodopsin using pharmacological chaperones (PC) that improve receptor folding and trafficking. In this study, we discovered stabilizing nonretinal small molecules by virtual and thermofluor screening and determined the crystal structure of pharmacologically stabilized opsin at 2.
View Article and Find Full Text PDFThe oligosaccharyltransferase complex, localized in the endoplasmic reticulum (ER) of eukaryotic cells, is responsible for the -linked glycosylation of numerous protein substrates. The membrane protein STT3 is a highly conserved part of the oligosaccharyltransferase and likely contains the active site of the complex. However, understanding the catalytic determinants of this system has been challenging, in part because of a discrepancy in the structural topology of the bacterial eukaryotic proteins and incomplete information about the mechanism of membrane integration.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
April 2016
Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described.
View Article and Find Full Text PDFMembrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites.
View Article and Find Full Text PDFCells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB -type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive.
View Article and Find Full Text PDFProteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes.
View Article and Find Full Text PDFAfter 25 years of intensive research, the understanding of how photoreceptors in the eye perceive light and convert it into nerve signals has largely advanced. Central to this is the structural and mechanistic exploration of the G protein-coupled receptor rhodopsin acting as a dim-light sensing pigment in the retina. Investigation of rhodopsin by X-ray crystallographic, electron microscopic, and biochemical means depends on the ability to produce and isolate pure rhodopsin protein.
View Article and Find Full Text PDFLong-term electrocardiography (ECG) featuring adequate atrial and ventricular signal quality is highly desirable. Routinely used surface leads are limited in atrial signal sensitivity and recording capability impeding complete ECG delineation, i.e.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2014
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway.
View Article and Find Full Text PDFP-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass-specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu(+)-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca(2+)-ATPase (of subclass PIIA).
View Article and Find Full Text PDFBackground: Diagnosing supraventricular arrhythmias by conventional long-term ECG can be cumbersome because of poor p-waves. Esophageal long-term electrocardiography (eECG) has an excellent sensitivity for atrial signals and may overcome this limitation. However, the optimal lead insertion depth (OLID) is not known.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2011
Agrin mediates accumulation of acetylcholine receptors (AChRs) at the developing neuromuscular junction, but has also been implicated as a regulator of central nervous system (CNS) synapses. A C-terminal region of agrin (Ag-C20) binds to the α3 subunit of the sodium-potassium ATPase (NKA) in CNS neurons suggesting that α3NKA is a neuronal agrin receptor, whereas a shorter agrin fragment (Ag-C15) was shown to act as a competitive antagonist. Here, we show that the agrin C22 construct, which represents the naturally occurring neurotrypsin cleavage product, constitutes a well-folded, stable domain, while the deletion of 48 residues that correspond to strands β1-β4 of the agrin laminin G3 domain imposed by the agrin C15 construct leads to a misfolded protein.
View Article and Find Full Text PDFThe periplasmic binding protein HmuT from Yersinia pestis (YpHmuT) is a component of the heme uptake locus hmu and delivers bound hemin to the inner-membrane-localized, ATP-binding cassette (ABC) transporter HmuUV for translocation into the cytoplasm. The mechanism of this process, heme transport across the inner membrane of pathogenic bacteria, is currently insufficiently understood at the molecular level. Here we describe the crystal structures of the substrate-free and heme-bound states of YpHmuT, revealing two lobes with a central binding cleft.
View Article and Find Full Text PDFUsing the keywords "urolithiasis and citrate treatment", "nephrolithaisis and citrate treatment", "kidney stones and citrate treatment", a Medline search revealed 635 articles published between 1 January 1966 and 1 December 2004. For the present analysis, only studies meeting all of the following criteria were included: (1) publications in English or German, (2) studies on preventive alkali citrate treatment in patients with calcium oxalate, uric acid and infection stone disease, (3) clinical studies including at least ten subjects, and (4) treatment phases of at least 1 week duration. A total of 43 studies met the inclusion criteria and were further subclassified according to intermediate or ultimate endpoints as well as to study design.
View Article and Find Full Text PDF