The aim of the present research was to explore the mechanisms underlying the role of dopamine in the regulation of insulin secretion in beta cells. The effect of dopamine on insulin secretion was investigated on INS 832/13Â cell line upon glucose and other secretagogues stimulation. Results show that dopamine significantly inhibits insulin secretion stimulated by both glucose and other secretagogues, while it has no effect on the basal secretion.
View Article and Find Full Text PDFSodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage.
View Article and Find Full Text PDFMood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (TAM) brain levels back to normal. TAM is a thyroid hormone derivative with cognitive effects.
View Article and Find Full Text PDFAims: Sodium-glucose cotransporter 2 inhibitors have beneficial effects on heart failure and cardiovascular mortality in diabetic and non-diabetic patients, with unclear mechanisms. Autophagy is a cardioprotective mechanism under acute stress conditions, but excessive autophagy accelerates myocardial cell death leading to autosis. We evaluated the protective role of empagliflozin (EMPA) against cardiac injury in murine diabetic cardiomyopathy.
View Article and Find Full Text PDFConnexins (Cxs) are transmembrane proteins involved in the formation of hemichannels and gap junctions (GJs). GJs are involved in various physiological functions, including secretion in glandular tissue. It has been demonstrated that Cx26, Cx32, and Cx43 are mainly expressed in glands, but no data are available in human salivary glands to date.
View Article and Find Full Text PDFeNOS-deficient mice were previously shown to develop hypertension and metabolic alterations associated with insulin resistance either in standard dietary conditions (eNOS-/- homozygotes) or upon high-fat diet (HFD) (eNOS+/- heterozygotes). In the latter heterozygote model, the present study investigated the pancreatic morphological changes underlying the abnormal glycometabolic phenotype. C57BL6 wild type (WT) and eNOS+/- mice were fed with either chow or HFD for 16 weeks.
View Article and Find Full Text PDFPonatinib (PON), a tyrosine kinase inhibitor approved in chronic myeloid leukaemia, has proven cardiovascular toxicity. We assessed mechanisms of sex-related PON-induced cardiotoxicity and identified rescue strategies in a murine model. PON+scrambled siRNA-treated male mice had a higher number of TUNEL-positive cells (%TdT+6.
View Article and Find Full Text PDFBackground: Ponatinib (PON), a third-generation tyrosine kinase inhibitor (TKI), has proven cardiovascular toxicity, with no known preventing agents usable to limit such side effect. Sodium-glucose cotransporter type 2 (SGLT2) inhibitors are a new class of glucose-lowering agents, featuring favorable cardiac and vascular effects.
Aims: We assessed the effects of the SGLT2 inhibitors empagliflozin (EMPA) and dapagliflozin (DAPA) on human aortic endothelial cells (HAECs) and underlying vasculo-protective mechanisms in an in vitro model of PON-induced endothelial toxicity.
Connexins (Cxs) are a family of membrane-spanning proteins, expressed in vertebrates and named according to their molecular weight. They are involved in tissue homeostasis, and they function by acting at several communication levels. Cardiac Cxs are responsible for regular heart function and, among them, Cx26 and Cx43 are widely expressed throughout the heart.
View Article and Find Full Text PDFSjögren's syndrome (SS) is an exocrinopathy characterized by the hypofunction of salivary glands (SGs). Aquaporin-5 (AQP5); a water channel involved in saliva formation; is aberrantly distributed in SS SG acini and contributes to glandular dysfunction. We aimed to investigate the role of ezrin in AQP5 mislocalization in SS SGs.
View Article and Find Full Text PDFSaliva secretion requires effective translocation of aquaporin 5 (AQP5) water channel to the salivary glands (SGs) acinar apical membrane. Patients with Sjögren's syndrome (SS) display abnormal AQP5 localization within acinar cells from SGs that correlate with sicca manifestation and glands hypofunction. Several proteins such as Prolactin-inducible protein (PIP) may regulate AQP5 trafficking as observed in lacrimal glands from mice.
View Article and Find Full Text PDFCardiac connexins (Cxs) are proteins responsible for proper heart function. They form gap junctions that mediate electrical and chemical signalling throughout the cardiac system, and thus enable a synchronized contraction. Connexins can also individually participate in many signal transduction pathways, interacting with intracellular proteins at various cellular compartments.
View Article and Find Full Text PDFRecent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1).
View Article and Find Full Text PDFPeptide oral administration is a hard goal to reach, especially if the brain is the target site. The purpose of the present study was to set up a vehicle apt to promote oral absorption of the neuropeptide dalargin (DAL), allowing it to cross the intestinal mucosal barrier, resist enzymatic degradation, and transport drugs to the brain after crossing the blood-brain barrier. Therefore, a chitosan quaternary ammonium derivative was synthesized and conjugated with methyl-β-cyclodextrin to prepare DAL-medicated nanoparticles (DAL-NP).
View Article and Find Full Text PDFConnexins are membrane-spanning proteins that form membrane channels and hemichannels. They are involved in the cellular communication and in the maintenance of tissue homeostasis. Recent studies in humans and animals have demonstrated that the expression and distribution of Cx43, the most studied connexin, can change during aging.
View Article and Find Full Text PDFOsteopontin (OPN), a novel hepatic damage marker, as well as several non-coding RNA seem to be associated with liver aging, a little studied and not yet defined process. The aim of the study was to evaluate the expression variations of OPN and miRNA-181a, the transcriptional profiling of long non coding (lnc) RNA GAS-5/miRNA-222 axis and lncRNA NEAT-1 in liver tissue of rats. In addition, to monitor the senescence process, the telomere shortening and TERT/TERC gene expression were also measured.
View Article and Find Full Text PDFHistidine-rich glycoprotein (HRG) is a plasma protein synthesized by the liver. We have given the first evidence of a tissue localization of HRG demonstrating its presence in skeletal muscle, associated with the zinc enzyme AMP deaminase (AMPD1). Moreover, we have shown that muscle cells do not synthesize HRG, but they can internalize it from plasma.
View Article and Find Full Text PDFChronological age is considered one of the major risk factors for cardiovascular disease and mortality. The study aimed to evaluate the transcriptional levels of the natriuretic peptides (NP), endothelin (ET)-1, adrenomedullin (ADM), their receptors and long non-coding (Lnc) RNA MIAT, MALAT-1, CARMEN and XIST in rat cardiac tissue as cardiovascular biomarkers of aging. Three groups of male Wistar rats were studied: A (n = 6; young), B (n = 13; adult), C (n = 10; old).
View Article and Find Full Text PDFNotwithstanding the introduction of Tyrosine Kinase Inhibitors (TKIs) revolutionized the outcome of Chronic Myeloid Leukemia (CML), one third of patients still suspends treatment for failure response. Recent research demonstrated that several BCR/ABL1-independent mechanisms can sustain resistance, but the relationship between these mechanisms and the outcome has not yet been fully understood. This study was designed to evaluate in a "real-life" setting if a change of expression of several genes involved in the WNT/BETA-CATENIN, JAK-STAT, and POLYCOMB pathways might condition the outcome of CML patients receiving TKIs.
View Article and Find Full Text PDFBackground: This proof of concept study was aimed at characterizing novel salivary biomarkers specific for different subsets in primary Sjögren's syndrome (pSS) in order to improve patients' profiling.
Methods: pSS patients were stratified in three subgroups according to both (a) focus score in the minor salivary gland biopsies (i.e.
Background: The role of monocyte/macrophage-derived microparticles (MPs) in the pathophysiology of cancer and chronic inflammatory diseases has been reported; nevertheless, the mechanism underlying microparticles release is currently unclear. The aim of the current study was to investigate whether matrix metalloproteinase (MMP) inhibitors could prevent MP shedding from stimulated human monocyte/macrophage.
Methods: Microparticles were obtained by isolated peripheral blood mononuclear cells after stimulation with the calcium ionophore, A23187.
Mesencephalic cell cultures are a good model to study the vulnerability of dopaminergic neurons and reproduce, in vitro, experimental models of Parkinson's disease. Rotenone associated as an environmental neurotoxin related to PD, is able to provoke dopaminergic neuron degeneration by inhibiting complex I of the mitochondrial respiratory chain and by inducing accumulation of α-synuclein. Recently, rotenone has been described to activate RhoA, a GTPase protein.
View Article and Find Full Text PDFAim: Glioblastoma multiforme is one of the deadliest forms of cancer, and current treatments are limited to palliative cares. The present study proposes a nanotechnology-based solution able to improve both drug efficacy and its delivery efficiency.
Materials & Methods: Nutlin-3a and superparamagnetic nanoparticles were encapsulated in solid lipid nanoparticles, and the obtained nanovectors (nutlin-loaded magnetic solid lipid nanoparticle [Nut-Mag-SLNs]) were characterized by analyzing both their physicochemical properties and their effects on U-87 MG glioblastoma cells.