Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked.
View Article and Find Full Text PDFDuring evolution, animals have returned from land to water, adapting with morphological modifications to life in an aquatic environment. We compared the osteochondral units of the humeral head of marine and terrestrial mammals across species spanning a wide range of body weights, focusing on microstructural organization and biomechanical performance. Aquatic mammals feature cartilage with essentially random collagen fiber configuration, lacking the depth-dependent, arcade-like organization characteristic of terrestrial mammalian species.
View Article and Find Full Text PDFMicrovasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology.
View Article and Find Full Text PDFSkeletal diseases and their surgical treatment induce severe pain. The innervation density of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelinated A∂-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that the innervation density of these nerve fibers was highest in periosteum.
View Article and Find Full Text PDFThe clinical translation of three-dimensionally printed bioceramic scaffolds with tailored architectures holds great promise toward the regeneration of bone to heal critical-size defects. Herein, the long-term in vivo performance of printed hydrogel-ceramic composites made of methacrylated-oligocaprolactone-poloxamer and low-temperature self-setting calcium-phosphates is assessed in a large animal model. Scaffolds printed with different internal architectures, displaying either a designed porosity gradient or a constant pore distribution, are implanted in equine tuber coxae critical size defects.
View Article and Find Full Text PDFObjective: To report the long-term outcome of nine dogs treated for caudal cervical spondylomyelopathy (CCSM) with surgical spinal fusion.
Study Design: Short case series.
Animals: Nine large-breed dogs.
Regenerated cartilage formed after Autologous Chondrocyte Implantation may be of suboptimal quality due to postulated hypertrophic changes. Parathyroid hormone-related peptide, containing the parathyroid hormone sequence (PTHrP 1-34), enhances cartilage growth during development and inhibits hypertrophic differentiation of mesenchymal stromal cells (MSCs) and growth plate chondrocytes. This study aims to determine the possible anabolic and/or hypertrophic effect of PTH on human articular chondrocytes.
View Article and Find Full Text PDFHydrogels can facilitate nucleus pulposus (NP) regeneration, either for clinical application or research into mechanisms of regeneration. However, many different hydrogels and culture conditions for human degenerated NP have been employed, making literature data difficult to compare. Therefore, we compared six different hydrogels of natural polymers and investigated the role of serum in the medium and of osmolarity during expansion or redifferentiation in an attempt to provide comparators for future studies.
View Article and Find Full Text PDFUnlabelled: Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown.
View Article and Find Full Text PDFThe mechanical properties of articular cartilage depend on the quality of its matrix, which consists of collagens and glycosaminoglycans (GAGs). The accumulation of advanced glycation end products (AGEs) can greatly affect the mechanics of cartilage. In the current study, we simulated the accumulation of AGEs by using L-threose to cross-link collagen molecules in the cartilage matrix (in vitro).
View Article and Find Full Text PDFThe implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process.
View Article and Find Full Text PDFEvidence is growing for the existence of an obesity-related phenotype of osteoarthritis in which low-grade inflammation and a disturbed metabolic profile play a role. The contribution of an obesity-induced metabolic dysbalance to the progression of the features of osteoarthritis upon mechanically induced cartilage damage was studied in a rat in vivo model. Forty Wistar rats were randomly allocated 1:1 to a standard diet or a high-fat diet.
View Article and Find Full Text PDFObjective: To report on the experiences with the use of commercial and autologous fibrin glue (AFG) and of an alternative method based on a 3D-printed polycaprolactone (PCL) anchor for the fixation of hydrogel-based scaffolds in an equine model for cartilage repair.
Methods: In a first study, three different hydrogel-based materials were orthotopically implanted in nine horses for 1-4 weeks in 6 mm diameter full-thickness cartilage defects in the medial femoral trochlear ridge and fixated with commercially available fibrin glue (CFG). One defect was filled with CFG only as a control.
Unlabelled: Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration.
View Article and Find Full Text PDFMSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue.
View Article and Find Full Text PDFControlled biomaterial-based corticosteroid release might circumvent multiple injections and the accompanying risks, such as hormone imbalance and muscle weakness, in osteoarthritic (OA) patients. For this purpose, microspheres were prepared from an amino acid-based polyester amide (PEA) platform and loaded with triamcinolone acetonide (TAA). TAA loaded microspheres were shown to release TAA for over 60days in PBS.
View Article and Find Full Text PDFStem Cells
January 2017
Traditionally, mesenchymal stem cells (MSCs) isolated from adult bone marrow were described as being capable of differentiating to various lineages including cartilage. Despite increasing interest in these MSCs, concerns regarding their safety, in vivo behavior and clinical effectiveness have restrained their clinical application. We hypothesized that MSCs have trophic effects that stimulate recycled chondrons (chondrocytes with their native pericellular matrix) to regenerate cartilage.
View Article and Find Full Text PDFSeveral experimental models of osteoarthritis in rats are used to study the pathophysiology of osteoarthritis. Many mechanically induced models have the limitation that permanent joint instability is induced by, for example, ligament transection or meniscal damage. This permanent instability will counteract the potential beneficial effects of therapy.
View Article and Find Full Text PDFDiffuse idiopathic skeletal hyperostosis (DISH) is a predominantly radiographic diagnosis and histological knowledge of DISH is limited. The aim of this study was to describe the histological characteristics of DISH in the spinal column and to study the relation between DISH and intervertebral disc (IVD) degeneration. Therefore, 10 human cadaveric spines with fluoroscopic evidence of DISH were compared with 10 controls.
View Article and Find Full Text PDFUsing a combination of articular chondrocytes (ACs) and mesenchymal stromal cells (MSCs) has shown to be a viable option for a single-stage cell-based treatment of focal cartilage defects. However, there is still considerable debate whether MSCs differentiate or have a chondroinductive role through trophic factors. In addition, it remains unclear whether direct cell-cell contact is necessary for chondrogenesis.
View Article and Find Full Text PDFIntroduction: Strategies for biological repair and regeneration of the intervertebral disc (IVD) by cell and tissue engineering are promising, but few have made it into a clinical setting. Recombinant human bone morphogenetic protein 7 (rhBMP-7) has been shown to stimulate matrix production by IVD cells in vitro and in vivo in animal models of induced IVD degeneration. The aim of this study was to determine the most effective dose of an intradiscal injection of rhBMP-7 in a spontaneous canine IVD degeneration model for translation into clinical application for patients with low back pain.
View Article and Find Full Text PDFDecellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent.
View Article and Find Full Text PDFPurpose: To develop a bio-assay for measuring long-term bioactivity of released anti-inflammatory compounds and to test the bioactivity of celecoxib (CXB) and triamcinolone acetonide (TA) released from a new PLGA-based microsphere platform.
Methods: Human osteoarthritic chondrocytes were plated according to standardized procedures after batch-wise harvest and cultured for 3 days to prevent cell confluency and changes in cell behaviour. Prostaglandin E2 (PGE2) production stimulated by TNFα was used as a parameter of inflammation.
Objective: This study aimed to investigate the regenerative capacity of chondrocytes derived from debrided defect cartilage and healthy cartilage from different regions in the joint to determine the best cell source for regenerative cartilage therapies.
Methods: Articular cartilage was obtained from Outerbridge grade III and IV cartilage lesions and from macroscopically healthy weight-bearing and nonweight-bearing (NWB) locations in the knee. Chondrocytes isolated from all locations were either pelleted directly (P0 pellets) or after expansion (P2 pellets) and analyzed for glycosaminoglycan (GAG), DNA, and cartilage-specific gene expression.