Venous needle dislodgement (VND) during dialysis is a rarely occurring adverse event, which becomes life-threatening if not handled promptly. Because the standard venous pressure alarm, implemented in most dialysis machines, has low sensitivity, a novel approach using extracted cardiac information to detect needle dislodgement is proposed. Four features are extracted from the arterial and venous pressure signals of the dialysis machine, characterizing the mean venous pressure, the venous cardiac pulse pressure, the time delay, and the correlation between the two pressure signals.
View Article and Find Full Text PDFObjective: Non-invasive sensing and reliable estimation of physiological parameters are important features of hemodialysis machines, especially for therapy customization (biofeedback). In this paper, we present a new method for joint estimation of two important hemodialysis-related physiological parameters-relative blood volume and plasma sodium concentration.
Methods: Our method makes use of a non-invasive sensor setup and a mathematical estimator.
Objective: Although respiratory problems are common among patients with end-stage renal disease, respiration is not continuously monitored during dialysis. The purpose of the present study is to investigate the feasibility of monitoring respiration using the pressure sensors of the dialysis machine.
Approach: Respiration induces variations in the blood pressure that propagates to the extracorporeal circuit of the dialysis machine.
Monitoring of ventricular premature beats (VPBs), being abundant in hemodialysis patients, can provide information on cardiovascular instability and electrolyte imbalance. In this paper, we describe a method for VPB detection which explores the signals acquired from the arterial and the venous pressure sensors, located in the extracorporeal blood circuit of a hemodialysis machine. The pressure signals are mainly composed of a pump component and a cardiac component.
View Article and Find Full Text PDFAlthough patients undergoing hemodialysis treatment often suffer from cardiovascular disease, monitoring of cardiac rhythm is not performed on a routine basis. Without requiring any extra sensor, this study proposes a method for extracting a cardiac signal from the built-in extracorporeal venous pressure sensor of the hemodialysis machine. The extraction is challenged by the fact that the cardiac component is much weaker than the pressure component caused by the peristaltic blood pump.
View Article and Find Full Text PDF