Publications by authors named "Mattias Heinrich"

Purpose: Accurate detection of central venous catheter (CVC) misplacement is crucial for patient safety and effective treatment. Existing artificial intelligence (AI) often grapple with the limitations of label inaccuracies and output interpretations that lack clinician-friendly comprehensibility. This study aims to introduce an approach that employs segmentation of support material and anatomy to enhance the precision and comprehensibility of CVC misplacement detection.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to evaluate tracheal collapsibility using low-dose 4D CT, comparing the results with traditional methods like inspiratory-expiratory CT and bronchoscopy in patients suspected of tracheal collapse.
  • - Researchers analyzed 4D CT scans from 52 patients, finding that 48% exhibited significant tracheal collapsibility (50% or greater) and noted differences between visual 4D CT assessments and other diagnostic methods regarding detection rates of collapsibility.
  • - Results showed that 4D CT was superior in identifying patients with severe collapsibility compared to both paired CT and bronchoscopy, with significant differences in collapsibility measurements between the groups assessed.
View Article and Find Full Text PDF

Registration of medical image data requires methods that can align anatomical structures precisely while applying smooth and plausible transformations. Ideally, these methods should furthermore operate quickly and apply to a wide variety of tasks. Deep learning-based image registration methods usually entail an elaborate learning procedure with the need for extensive training data.

View Article and Find Full Text PDF

In cardiac cine imaging, acquiring high-quality data is challenging and time-consuming due to the artifacts generated by the heart's continuous movement. Volumetric, fully isotropic data acquisition with high temporal resolution is, to date, intractable due to MR physics constraints. To assess whole-heart movement under minimal acquisition time, we propose a deep learning model that reconstructs the volumetric shape of multiple cardiac chambers from a limited number of input slices while simultaneously optimizing the slice acquisition orientation for this task.

View Article and Find Full Text PDF

Purpose: Navigation guidance is a key requirement for a multitude of lung interventions using video bronchoscopy. State-of-the-art solutions focus on lung biopsies using electromagnetic tracking and intraoperative image registration w.r.

View Article and Find Full Text PDF

3D human pose estimation is a key component of clinical monitoring systems. The clinical applicability of deep pose estimation models, however, is limited by their poor generalization under domain shifts along with their need for sufficient labeled training data. As a remedy, we present a novel domain adaptation method, adapting a model from a labeled source to a shifted unlabeled target domain.

View Article and Find Full Text PDF

Image registration for temporal ultrasound sequences can be very beneficial for image-guided diagnostics and interventions. Cooperative human-machine systems that enable seamless assistance for both inexperienced and expert users during ultrasound examinations rely on robust, realtime motion estimation. Yet rapid and irregular motion patterns, varying image contrast and domain shifts in imaging devices pose a severe challenge to conventional realtime registration approaches.

View Article and Find Full Text PDF

The Human BioMolecular Atlas Program (HuBMAP) provides an opportunity to contextualize findings across cellular to organ systems levels. Constructing an atlas target is the primary endpoint for generalizing anatomical information across scales and populations. An initial target of HuBMAP is the kidney organ and arterial phase contrast-enhanced computed tomography (CT) provides distinctive appearance and anatomical context on the internal substructure of kidney organs such as renal context, medulla, and pelvicalyceal system.

View Article and Find Full Text PDF

Domain Adaptation (DA) has recently been of strong interest in the medical imaging community. While a large variety of DA techniques have been proposed for image segmentation, most of these techniques have been validated either on private datasets or on small publicly available datasets. Moreover, these datasets mostly addressed single-class problems.

View Article and Find Full Text PDF

Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks. This limits the development of registration methods, the adoption of research advances into practice, and a fair benchmark across competing approaches.

View Article and Find Full Text PDF

Unlabelled: Deep learning-based image segmentation models rely strongly on capturing sufficient spatial context without requiring complex models that are hard to train with limited labeled data. For COVID-19 infection segmentation on CT images, training data are currently scarce. Attention models, in particular the most recent self-attention methods, have shown to help gather contextual information within deep networks and benefit semantic segmentation tasks.

View Article and Find Full Text PDF

: Image registration is the process of aligning images, and it is a fundamental task in medical image analysis. While many tasks in the field of image analysis, such as image segmentation, are handled almost entirely with deep learning and exceed the accuracy of conventional algorithms, currently available deformable image registration methods are often still conventional. Deep learning methods for medical image registration have recently reached the accuracy of conventional algorithms.

View Article and Find Full Text PDF

The construction of three-dimensional multi-modal tissue maps provides an opportunity to spur interdisciplinary innovations across temporal and spatial scales through information integration. While the preponderance of effort is allocated to the cellular level and explore the changes in cell interactions and organizations, contextualizing findings within organs and systems is essential to visualize and interpret higher resolution linkage across scales. There is a substantial normal variation of kidney morphometry and appearance across body size, sex, and imaging protocols in abdominal computed tomography (CT).

View Article and Find Full Text PDF

Deep learning based medical image registration remains very difficult and often fails to improve over its classical counterparts where comprehensive supervision is not available, in particular for large transformations-including rigid alignment. The use of unsupervised, metric-based registration networks has become popular, but so far no universally applicable similarity metric is available for multimodal medical registration, requiring a trade-off between local contrast-invariant edge features or more global statistical metrics. In this work, we aim to improve over the use of handcrafted metric-based losses.

View Article and Find Full Text PDF

Background And Objective: Fast and robust alignment of pre-operative MRI planning scans to intra-operative ultrasound is an important aspect for automatically supporting image-guided interventions. Thus far, learning-based approaches have failed to tackle the intertwined objectives of fast inference computation time and robustness to unexpectedly large motion and misalignment. In this work, we propose a novel method that decouples deep feature learning and the computation of long ranging local displacement probability maps from fast and robust global transformation prediction.

View Article and Find Full Text PDF

A major goal of lung cancer screening is to identify individuals with particular phenotypes that are associated with high risk of cancer. Identifying relevant phenotypes is complicated by the variation in body position and body composition. In the brain, standardized coordinate systems (e.

View Article and Find Full Text PDF

Deep vein thrombosis (DVT) is a blood clot most commonly found in the leg, which can lead to fatal pulmonary embolism (PE). Compression ultrasound of the legs is the diagnostic gold standard, leading to a definitive diagnosis. However, many patients with possible symptoms are not found to have a DVT, resulting in long referral waiting times for patients and a large clinical burden for specialists.

View Article and Find Full Text PDF

Purpose: Body weight is a crucial parameter for patient-specific treatments, particularly in the context of proper drug dosage. Contactless weight estimation from visual sensor data constitutes a promising approach to overcome challenges arising in emergency situations. Machine learning-based methods have recently been shown to perform accurate weight estimation from point cloud data.

View Article and Find Full Text PDF

The Human BioMolecular Atlas Program (HuBMAP) seeks to create a molecular atlas at the cellular level of the human body to spur interdisciplinary innovations across spatial and temporal scales. While the preponderance of effort is allocated towards cellular and molecular scale mapping, differentiating and contextualizing findings within tissues, organs and systems are essential for the HuBMAP efforts. The kidney is an initial organ target of HuBMAP, and constructing a framework (or atlas) for integrating information across scales is needed for visualizing and integrating information.

View Article and Find Full Text PDF

Deep learning based medical image segmentation is an important step within diagnosis, which relies strongly on capturing sufficient spatial context without requiring too complex models that are hard to train with limited labelled data. Training data is in particular scarce for segmenting infection regions of CT images of COVID-19 patients. Attention models help gather contextual information within deep networks and benefit semantic segmentation tasks.

View Article and Find Full Text PDF

In the last two years learning-based methods have started to show encouraging results in different supervised and unsupervised medical image registration tasks. Deep neural networks enable (near) real time applications through fast inference times and have tremendous potential for increased registration accuracies by task-specific learning. However, estimation of large 3D deformations, for example present in inhale to exhale lung CT or interpatient abdominal MRI registration, is still a major challenge for the widely adopted U-Net-like network architectures.

View Article and Find Full Text PDF
Article Synopsis
  • * An open-source platform was developed to calculate myocardial strain by adjusting image registration methods, which successfully tracked heart wall motion from patient data with high accuracy.
  • * Validation showed that these techniques can effectively distinguish between normal and dyssynchronous heart contractions, with minimal error when comparing results from different temporal frames.
View Article and Find Full Text PDF

Methods for deep learning based medical image registration have only recently approached the quality of classical model-based image alignment. The dual challenge of both a very large trainable parameter space and often insufficient availability of expert supervised correspondence annotations has led to slower progress compared to other domains such as image segmentation. Yet, image registration could also more directly benefit from an iterative solution than segmentation.

View Article and Find Full Text PDF

Deformable image registration is still a challenge when the considered images have strong variations in appearance and large initial misalignment. A huge performance gap currently remains for fast-moving regions in videos or strong deformations of natural objects. We present a new semantically guided and two-step deep deformation network that is particularly well suited for the estimation of large deformations.

View Article and Find Full Text PDF

Purpose: Nonlinear multimodal image registration, for example, the fusion of computed tomography (CT) and magnetic resonance imaging (MRI), fundamentally depends on a definition of image similarity. Previous methods that derived modality-invariant representations focused on either global statistical grayscale relations or local structural similarity, both of which are prone to local optima. In contrast to most learning-based methods that rely on strong supervision of aligned multimodal image pairs, we aim to overcome this limitation for further practical use cases.

View Article and Find Full Text PDF